Complete question:
The growth of a city is described by the population function p(t) = P0e^kt where P0 is the initial population of the city, t is the time in years, and k is a constant. If the population of the city atis 19,000 and the population of the city atis 23,000, which is the nearest approximation to the population of the city at
Answer:
27,800
Step-by-step explanation:
We need to obtain the initial population(P0) and constant value (k)
Population function : p(t) = P0e^kt
At t = 0, population = 19,000
19,000 = P0e^(k*0)
19,000 = P0 * e^0
19000 = P0 * 1
19000 = P0
Hence, initial population = 19,000
At t = 3; population = 23,000
23,000 = 19000e^(k*3)
23000 = 19000 * e^3k
e^3k = 23000/ 19000
e^3k = 1.2105263
Take the ln
3k = ln(1.2105263)
k = 0.1910552 / 3
k = 0.0636850
At t = 6
p(t) = P0e^kt
p(6) = 19000 * e^(0.0636850 * 6)
P(6) = 19000 * e^0.3821104
P(6) = 19000 * 1.4653739
P(6) = 27842.104
27,800 ( nearest whole number)
Answer:
or
Step-by-step explanation:
Add the exponent two to both sides. After adding -2 and 2 you get 0 and any number raised to the zero power is one. And 4 plus two is 6
=
Answer: 3 for the first one. and 2 for the second
Answer:
![\left[\begin{array}{ccc}1&2&5\\1&1&1\\4&6&5\end{array}\right]*\left[\begin{array}{ccc}x1\\x2\\x3\end{array}\right]=\left[\begin{array}{ccc}5\\6\\7\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%265%5C%5C1%261%261%5C%5C4%266%265%5Cend%7Barray%7D%5Cright%5D%2A%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx1%5C%5Cx2%5C%5Cx3%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%5C%5C6%5C%5C7%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
Let's find the answer.
Because we have 3 equations and 3 variables (x1, x2, x3) a 3x3 matrix (A) can be constructed by using their respectively coefficients.
Equations:
Eq. 1 : x1 + 2x2 + 5x3 = 5
Eq. 2 : x1 + x2 + x3 = 6
E1. 3 : 4x1 + 6x2 + 5x3 = 7
Coefficients for x1 ; x2 ; x3
From eq. 1 : 1 ; 2 ; 5
From eq. 2 : 1 ; 1 ; 1
From eq. 3 : 4 ; 6 ; 5
So matrix A is:
![\left[\begin{array}{ccc}1&2&5\\1&1&1\\4&6&5\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%265%5C%5C1%261%261%5C%5C4%266%265%5Cend%7Barray%7D%5Cright%5D)
And the vector of vriables (X) is:
![\left[\begin{array}{ccc}x1\\x2\\x3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx1%5C%5Cx2%5C%5Cx3%5Cend%7Barray%7D%5Cright%5D)
Now we can find the resulting vector (B) using the 'resulting values' from each equation:
![\left[\begin{array}{ccc}5\\6\\7\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%5C%5C6%5C%5C7%5Cend%7Barray%7D%5Cright%5D)
In conclusion, AX=B is:
![\left[\begin{array}{ccc}1&2&5\\1&1&1\\4&6&5\end{array}\right]*\left[\begin{array}{ccc}x1\\x2\\x3\end{array}\right]=\left[\begin{array}{ccc}5\\6\\7\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%265%5C%5C1%261%261%5C%5C4%266%265%5Cend%7Barray%7D%5Cright%5D%2A%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx1%5C%5Cx2%5C%5Cx3%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%5C%5C6%5C%5C7%5Cend%7Barray%7D%5Cright%5D)
Answer:
Square I think
Step-by-step explanation: