Answer:
7 m/s
Explanation:
To solve this problem you must use the conservation of energy.

That math speak for, initial kinetic energy plus initial potential energy equals final kinetic energy plus final potential energy.
The initial PE (potential energy) is 0 because it hasn't been raised in the air yet. The final KE (kinetic energy) is 0 because it isn't moving. This gives the following:


K1=U2

Solve for v

Input known values and you get 7 m/s.
The 'formulas' to use are just the definitions of 'power' and 'work':
Power = (work done) / (time to do the work)
and
Work = (force) x (distance) .
Combine these into one. Take the definition of 'Work', and write it in place of 'work' in the definition of power.
Power = (force x distance) / (time)
From the sheet, we know the power, the distance, and the time. So we can use this one formula to find the force.
Power = (force x distance) / (time)
Multiply each side by (time): (Power) x (time) = (force) x (distance)
Divide each side by (distance): Force = (power x time) / (distance).
Look how neat, clean, and simple that is !
Force = (13.3 watts) x (3 seconds) / (4 meters)
Force = (13.3 x 3 / 4) (watt-seconds / meter)
Force = 39.9/4 (joules/meter)
<em>Force = 9.975 Newtons</em>
Is that awesome or what !
It's b, because the more force an object it is given the harder it will be for it to slow down.
Answer:
<u><em>a. True</em></u>
Explanation:
<em>Vectors are an important part of the language of science, mathematics, and engineering.</em>
Answer:
An atom is the smallest constituent unit of ordinary matter that constitutes a chemical element. Every solid, liquid, gas, and plasma is composed of neutral or ionized atoms. Atoms are extremely small; typical sizes are around 100 picometers.Explanation: