1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
garik1379 [7]
2 years ago
5

Why a plastic pen which is rubbed with hair,is able to attract small pieces of papers​

Physics
1 answer:
AURORKA [14]2 years ago
5 0

Answer:

Explanation:

ssssssssssssssssssssssssssssssssssssss

You might be interested in
A 125-kg astronaut (including space suit) acquires a speed of 2.50 m/s by pushing off with her legs from a 1900-kg space capsule
ryzh [129]

(a) 0.165 m/s

The total initial momentum of the astronaut+capsule system is zero (assuming they are both at rest, if we use the reference frame of the capsule):

p_i = 0

The final total momentum is instead:

p_f = m_a v_a + m_c v_c

where

m_a = 125 kg is the mass of the astronaut

v_a = 2.50 m/s is the velocity of the astronaut

m_c = 1900 kg is the mass of the capsule

v_c is the velocity of the capsule

Since the total momentum must be conserved, we have

p_i = p_f = 0

so

m_a v_a + m_c v_c=0

Solving the equation for v_c, we find

v_c = - \frac{m_a v_a}{m_c}=-\frac{(125 kg)(2.50 m/s)}{1900 kg}=-0.165 m/s

(negative direction means opposite to the astronaut)

So, the change in speed of the capsule is 0.165 m/s.

(b) 520.8 N

We can calculate the average force exerted by the capsule on the man by using the impulse theorem, which states that the product between the average force and the time of the collision is equal to the change in momentum of the astronaut:

F \Delta t = \Delta p

The change in momentum of the astronaut is

\Delta p= m\Delta v = (125 kg)(2.50 m/s)=312.5 kg m/s

And the duration of the push is

\Delta t = 0.600 s

So re-arranging the equation we find the average force exerted by the capsule on the astronaut:

F=\frac{\Delta p}{\Delta t}=\frac{312.5 kg m/s}{0.600 s}=520.8 N

And according to Newton's third law, the astronaut exerts an equal and opposite force on the capsule.

(c) 25.9 J, 390.6 J

The kinetic energy of an object is given by:

K=\frac{1}{2}mv^2

where

m is the mass

v is the speed

For the astronaut, m = 125 kg and v = 2.50 m/s, so its kinetic energy is

K=\frac{1}{2}(125 kg)(2.50 m/s)^2=390.6 J

For the capsule, m = 1900 kg and v = 0.165 m/s, so its kinetic energy is

K=\frac{1}{2}(1900 kg)(0.165 m/s)^2=25.9 J

3 0
3 years ago
An internal explosion breaks an object, initially at rest, into two pieces: A and B. Piece A has 1.9 times the mass of piece B.
Helen [10]

Kinetic energy of pieces A and B are 2724 Joule and 5176 Joule respectively.

<h3>What is the relation between the masses of A and B?</h3>
  • Let mass of piece A = Ma

Mass of piece B = Mb

  • Velocities of pieces A and B are Va and Vb respectively.
  • As per conservation of momentum,

Ma×Va = Mb×Vb

  • Here, Ma=1.9Mb

So, 1.9Mb × Va = Mb×Vb

=> 1.9Va = Vb

<h3>What are the kinetic energy of piece A and B?</h3>
  • Expression of kinetic energy of piece A = 1/2 × Ma × Va²
  • Kinetic energy of piece B = 1/2 × Mb × Vb²
  • Total kinetic energy= 7900J

=>1/2 × Ma × Va² + 1/2 × Mb × Vb² = 7900

=> 1/2 × Ma × Va² + 1/2 × (Ma/1.9) × (1.9Va)² = 7900

=> 1/2 × Ma × Va² ×(1+1.9) = 7900 j

=> 1/2 × Ma × Va² = 7900/2.9 = 2724 Joule

  • Kinetic energy of piece B = 7900 - 2724 = 5176 Joule

Thus, we can conclude that the kinetic energy of piece A and B are 2724 Joule and 5176 Joule respectively.

Learn more about the kinetic energy here:

brainly.com/question/25959744

#SPJ1

5 0
1 year ago
It is correct to say that impulse is equal toA) momentum.B) the change in momentum.C) the force multiplied by the distance the f
Elena-2011 [213]

Answer:

B) the change in momentum.

Explanation:

The impulse is defined as the product between the force applied on an object (F) and the duration of the collision (\Delta t):

J=F \Delta t (1)

We can rewrite the force by using Newton's second law, as the product between mass (m) and acceleration (a):

F=ma

So, (1) becomes

J=ma \Delta t

Now we can also rewrite the acceleration as ratio between the change in velocity and change in time: a=\frac{\Delta v}{\Delta t}. If we substitute into the previous equation, we find

J=m\frac{\Delta v}{\Delta t}\Delta t=m\Delta v

And the quantity m\Delta v is equivalent to the change in momentum, \Delta p.

6 0
3 years ago
What wavelength would a ripple in water have if the frequency is 1.8 Hz and a
Yuki888 [10]

Explanation:

825m/s / 1.8Hz = 458.33m

6 0
2 years ago
Read 2 more answers
How do resistors in parallel affect the total resistance?
4vir4ik [10]

Answer:

They're going to increase the total resistance as R_{T} = \sum\limits_{i=1}^N \left(\frac{1}{R_i} \right)^{-1}

Explanation:

If the resistors are in parallel, the potential difference is the same for each resistor. But the total current is the sum of the currents that pass through each of the resistors. Then

I = I_1 + I_2 + ... + I_N

where

I_i = \frac{V_i}{R_i}

but

V_i = V_j = V for i,j= 1, 2,..., N

so

I = \frac{V}{R_1}+ \frac{V}{R_2} + ... + \frac{V}{R_N} = \left(\frac{1}{R_1} +\frac{1}{R_2} + ... + \frac{1}{R_N}\right)V = \frac{V}{R_T}

where

R_T = \left(\frac{1}{R_1} +\frac{1}{R_2} + ... + \frac{1}{R_N}\right)^{-1} =\sum\limits_{i=1}^N \left(\frac{1}{R_i} \right)^{-1}

4 0
3 years ago
Other questions:
  • One-eighth of an original radioactive sample will remain at the end of __________ half-lives.
    12·1 answer
  • How do you think the temperature difference between the beakers relates to the rate of heat transfer?
    12·1 answer
  • Which atomic model is missing from this set?
    6·1 answer
  • A forklift raises a crate weighing 8.35 × 102 newtons to a height of 6.0 meters. What amount of work does the forklift do?
    7·2 answers
  • One light-hour is the distance that light travels in an hour. How far is this, in kilometers? (Recall that the speed of light is
    10·1 answer
  • A perturbation in the temperature of a stream leaving a chemical reactor follows a decaying sinusoidal variation, according to t
    14·1 answer
  • Convert 2 kg to cg give you answer in SI
    14·1 answer
  • If you are going to see which food dye diffuses fastest in water. Which variables do you measure How will you do this?
    15·1 answer
  • A skater is spinning with his arms outstretched. He has a 2 lb weight in each hand. In an attempt to change his angular velocity
    11·1 answer
  • A race car traveling at 44m/s slows at a constant rate to a velocity of 22m/s over 11 seconds , how far does it move during this
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!