To solve this problem it is necessary to apply the concepts related to the capacitance in the disks, the difference of the potential and the load in the disc.
The capacitance can be expressed in terms of the Area, the permeability constant and the diameter:

Where,
= Permeability constant
A = Cross-sectional Area
d = Diameter
Potential difference between the two disks,
V = Ed
Where,
E = Electric field
d = diameter
Q = Charge on the disk equal to 
Through the value found and the expression given for capacitance and potential, we can define the electric charge as





Re-arranging the equation to find the diameter of the disks, the equation will be:

Replacing,


Therefore the diameter of the disks is 0.03m
Electrons can move from one atom to another.
When a lot of them are doing it at the same time,
you have an electric current.
We asked around here at Brainly, and nobody knows
what an "Msideus" is, but we all know that there aren't
any of them in atoms.
I’m assuming we’re suppose to get some kind of graph but, Instantaneous speed is the speed that is happening right now. Like driving a car at 15k/h. The instantaneous speed of the car 15k/h. On the graph, at 5s. Wherever the line is, will tell you what the speed is.
Answer:
Explanation:
a )
Reaction force of the ground
R = mg
= 160 N
Maximum friction force possible
= μ x R
= μ x 160
= .4 x 160
= 64 N .
b )
160 N will act at middle point . 740N will act at distance of 3 / 5 m from the wall ,
Taking moment about top point of ladder
160 x 1.5 + 740 x 3/5 + f x 4 = 900 x 3
240 + 444 + 4f = 2700
f = 504 N
c )
Let x be the required distance.
Taking moment about top point of ladder
160 x 1.5 + 740 x 3 x / 5 + .4 x 900 x 4 = 900 x 3 ( .4 x 900 is the maximum friction possible )
240 + 444 x + 1440 = 2700
x = 2.3 m
so man can go upto 2.3 at which maximum friction acts .