Answer:
9.43*10^3 year
Explanation:
For this question, we ought to remember, or know that the half life of carbon 14 is 5730, and that would be vital in completing the calculation
To start with, we use the formula
t(half) = In 2/k,
if we make k the subject of formula, we have
k = in 2/t(half), now we substitute for the values
k = in 2 / 5730
k = 1.21*10^-4 yr^-1
In(A/A•) = -kt, on rearranging, we find out that
t = -1/k * In(A/A•)
The next step is to substitite the values for each into the equation, giving us
t = -1/1.21*10^-4 * In(5.4/15.3)
t = -1/1.21*10^-4 * -1.1041
t = 0.943*10^4 year
The dimension of a/b where x is the distance and t is the time is T
Given the expression
x = at + bt²
where
x is the distance
t is the time
Based on the homogeneity principle, the expression on the left-hand side must be equal to that on the right. Hence;
x = at

Since x is the distance and distance is measured in metres, the dimension equivalent will be the length 'L'
Since t is the time and time is measured in seconds, the dimension equivalent will be the seconds 'T'

Similarly;
x = bt²

Next is to get a/b;

Hence the dimension of a/b is T
Answer:
They are both mechanical waves