Answer:
The cost of a school banquet is $75+30n, where n is the number of people attending.
If 53 people are attending to visit school banquet, then you have to find the value of given expression at n=53.
At n=53, the value is $(75+30·53)=$1,665.
Step-by-step explanation:
For #3, it's 5.4 because you divide the total amount of money made by the amount of money earned per hour.
49.95/9.25=5.4 hours
Answer: c. 8!
Step-by-step explanation:
We know , that if we line up n things , then the total number of ways to arrange n things in a line is given by :-
( in words :- n factorial)
Therefore , the number of ways 8 cars can be lined up at a toll booth would be 8! .
Hence, the correct answer is c. 8! .
Alternatively , we also use multiplicative principle,
If we line up 8 cars , first we fix one car , then the number of choices for the next place will be 7 , after that we fix second car ,then the number of choices for the next place will be 6 , and so on..
So , the total number of ways to line up 8 cars = 8 x 7 x 6 x 5 x 4 x 3 x 2 x1 = 8!
Hence, the correct answer is c. 8! .
Answer: See below
Step-by-step explanation:
27. -(a-3)
28. (b-1)(b+3)
29. (c+4)(c+5)
30. d(d+5)
31. -(3/4)(2e-5)
Sorry - I don't have time to enter the details. Look for areas where the expressions can be factored in a manner that forms as many equivalent expressions in both the numerator and denominator.
For example: In problem 30:
(5d-20)/(d^2+d-20) * [??]/20d = 1/4
Factor:
<u>(5(d-4))</u> <u>d(d+5)</u> = 1/4
(d-4)(d+5<u>)</u> 20d
The (d-4), d+5, and d terms cancel, leaving
5/20 = 1/4