1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svet-max [94.6K]
3 years ago
11

2. The Welcher Adult Intelligence Test Scale is composed of a number of subtests. On one subtest, the raw scores have a mean of

35 and a standard deviation of 6. Assuming these raw scores form a normal distribution: a) What number represents the 65th percentile (what number separates the lower 65% of the distribution)? 37.31 b) What number represents the 90th percentile? 42.71 c) What is the probability of getting a raw score between 28 and 38? 57% d) What is the probability of getting a raw score between 41 and 44? 9
Mathematics
2 answers:
IgorC [24]3 years ago
6 0

Answer:

a) 37.31 b) 42.70 c) 0.57 d) 0.09

Step-by-step explaanation:

We are regarding a normal distribution with a mean of 35 and a standard deviation of 6, i.e., \mu = 35 and \sigma = 6. We know that the probability density function for a normal distribution with a mean of \mu and a standard deviation of \sigma is given by

f(x) = \frac{1}{\sqrt{2\pi}\sigma}\exp[-\frac{(x-\mu)^{2}}{2\sigma^{2}}]

in this case we have

f(x) = \frac{1}{\sqrt{2\pi}6}\exp[-\frac{(x-35)^{2}}{2(6^{2})}]

Let X be the random variable that represents a row score, we find the values we are seeking in the following way

a)  we are looking for a number x_{0} such that

P(X\leq x_{0}) = \int\limits^{x_{0}}_{-\infty} {f(x)} \, dx = 0.65, this number is x_{0}=37.31

you can find this answer using the R statistical programming languange and the instruction qnorm(0.65, mean = 35, sd = 6)

b) we are looking for a number  x_{1} such that

P(X\leq x_{1}) = \int\limits^{x_{1}}_{-\infty} {f(x)} \, dx = 0.9, this number is x_{1}=42.70

you can find this answer using the R statistical programming languange and the instruction qnorm(0.9, mean = 35, sd = 6)

c) we find this probability as

P(28\leq X\leq 38)=\int\limits^{38}_{28} {f(x)} \, dx = 0.57

you can find this answer using the R statistical programming languange and the instruction pnorm(38, mean = 35, sd = 6) -pnorm(28, mean = 35, sd = 6)

d) we find this probability as

P(41\leq X\leq 44)=\int\limits^{44}_{41} {f(x)} \, dx = 0.09

you can find this answer using the R statistical programming languange and the instruction pnorm(44, mean = 35, sd = 6) -pnorm(41, mean = 35, sd = 6)

salantis [7]3 years ago
6 0

Answer:

a) 37.31

b) 42.68

c) 57.05% probability of getting a raw score between 28 and 38

d) 9.19% probability of getting a raw score between 41 and 44.

Step-by-step explanation:

Problems of normally distributed samples can be solved using the z-score formula.

In a set with mean \mu and standard deviation \sigma, the zscore of a measure X is given by:

Z = \frac{X - \mu}{\sigma}

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this problem, we have that:

\mu = 35, \sigma = 6

a) What number represents the 65th percentile (what number separates the lower 65% of the distribution)?

This is X when Z has a pvalue of 0.65. So X when Z = 0.385.

Z = \frac{X - \mu}{\sigma}

0.385 = \frac{X - 35}{6}

X - 35 = 6*0.385

X = 37.31

b) What number represents the 90th percentile?

This is X when Z has a pvalue of 0.9. So X when Z = 1.28

Z = \frac{X - \mu}{\sigma}

1.28 = \frac{X - 35}{6}

X - 35 = 6*1.28

X = 42.68

c) What is the probability of getting a raw score between 28 and 38?

This is the pvalue of Z when X = 38 subtracted by the pvalue of Z when X = 28. So

X = 38

Z = \frac{X - \mu}{\sigma}

Z = \frac{38 - 35}{6}

Z = 0.5

Z = 0.5 has a pvalue of 0.6915

X = 28

Z = \frac{X - \mu}{\sigma}

Z = \frac{28 - 35}{6}

Z = -1.17

Z = -1.17 has a pvalue of 0.1210

0.6915 - 0.1210 = 0.5705

57.05% probability of getting a raw score between 28 and 38

d) What is the probability of getting a raw score between 41 and 44?

This is the pvalue of Z when X = 44 subtracted by the pvalue of Z when X = 41. So

X = 44

Z = \frac{X - \mu}{\sigma}

Z = \frac{44 - 35}{6}

Z = 1.5

Z = 1.5 has a pvalue of 0.9332

X = 41

Z = \frac{X - \mu}{\sigma}

Z = \frac{41 - 35}{6}

Z = 1

Z = 1 has a pvalue of 0.8413

0.9332 - 0.8413 = 0.0919

9.19% probability of getting a raw score between 41 and 44.

You might be interested in
Solve -2=4r+s for s
musickatia [10]

Answer:

Step-by-step explanation:

-2 = 4r + s

subtract 4r from both sides of the equation

-2 -4r = s

5 0
3 years ago
An architects blue print for a new house shows the kitchen.being.7 inches wide if the scale used to create the blue print is 0.5
ASHA 777 [7]
7/.5=14
14 feet wide is the kitchen
3 0
3 years ago
What's 2+2=...........?
mr Goodwill [35]
The answer is 4 (four)
3 0
3 years ago
Read 2 more answers
Sue's age is one year less than half her mother's age. The sum of their ages is 71 years. If x represents Sue's age, which equat
erastovalidia [21]
Option A would be your answer. We know 71 is the product. We also know that Sues age is one year less than half her mothers age. -1 comes from the problem saying one year less. We can already eliminate the other 3 options at this point.
5 0
3 years ago
Who can help me with my homework for free
Softa [21]
Text me off of here ................
5 0
3 years ago
Read 2 more answers
Other questions:
  • Find the slope of the line that passes through the points (3, 6) and (5, 3).
    6·1 answer
  • What is the perimeter of a rectangle that is 2m 10cm by 45cm?
    10·1 answer
  • What is the mean of variable a<br><br><br><br><br><br>piz help me i have one more question
    11·1 answer
  • A survey of 100 college students who frequent the reading lounge of a university revealed the following results: 41 read Time. 3
    13·1 answer
  • Which are side lengths of quadrilateral PQRS? Check
    5·1 answer
  • Someone, please solve this equation without using L'Hopital's rule.<img src="https://tex.z-dn.net/?f=%5Clim_%7Bx%20%5Cto%20%5C0%
    11·1 answer
  • Solve log (x + 1) = –x2 + 10 by graphing. Which equations should be graphed?
    14·2 answers
  • What is the volume of a rectangular prism that has a length of 15 mm, a width of 11 mm, and a height of 4 mm?
    13·2 answers
  • (02.02 MC)
    10·2 answers
  • Mr.Smith had $2400 in his account.He withdrew 60% of the money to buy a new TV set.Calculate the percentage that is left in his
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!