Answer: 0.0548
Step-by-step explanation:
Given, A research study investigated differences between male and female students. Based on the study results, we can assume the population mean and standard deviation for the GPA of male students are µ = 3.5 and σ = 0.05.
Let
represents the sample mean GPA for each student.
Then, the probability that the random sample of 100 male students has a mean GPA greater than 3.42:
![P(\overline{X}>3.42)=P(\dfrac{\overline{X}-\mu}{\dfrac{\sigma}{\sqrt{n}}}>\dfrac{3.42-3.5}{\dfrac{0.5}{\sqrt{100}}})\\\\=P(Z>\dfrac{-0.08}{\dfrac{0.5}{10}})\ \ \ [Z=\dfrac{\overline{X}-\mu}{\dfrac{\sigma}{\sqrt{n}}}]\\\\=P(Z>1.6)\\\\=1-P(Z](https://tex.z-dn.net/?f=P%28%5Coverline%7BX%7D%3E3.42%29%3DP%28%5Cdfrac%7B%5Coverline%7BX%7D-%5Cmu%7D%7B%5Cdfrac%7B%5Csigma%7D%7B%5Csqrt%7Bn%7D%7D%7D%3E%5Cdfrac%7B3.42-3.5%7D%7B%5Cdfrac%7B0.5%7D%7B%5Csqrt%7B100%7D%7D%7D%29%5C%5C%5C%5C%3DP%28Z%3E%5Cdfrac%7B-0.08%7D%7B%5Cdfrac%7B0.5%7D%7B10%7D%7D%29%5C%20%5C%20%5C%20%5BZ%3D%5Cdfrac%7B%5Coverline%7BX%7D-%5Cmu%7D%7B%5Cdfrac%7B%5Csigma%7D%7B%5Csqrt%7Bn%7D%7D%7D%5D%5C%5C%5C%5C%3DP%28Z%3E1.6%29%5C%5C%5C%5C%3D1-P%28Z%3C1.6%29%5C%5C%5C%5C%3D1-0.9452%3D0.0548)
hence, the required probability is 0.0548.
The scale factor from the small one to the big one is 3
Answer:
27.41%
Step-by-step explanation:
Data provided in the question
The staffed of Alpha company = 79%
The staffed of Beta company = 62%
Based on the above information, the relative change of staffing from Alpha to beta company is
As we know that


By applying the above formula we can get the relative change and the same is to be applied so that the correct percentage could come
Answer:
Thus the required Pythagorean triplet is 14,48,50. ∴ The required Pythagorean triplet is 16,63,65.
Step-by-step explanation:
Its 9 because it includes f(x)