The answer is b because the wind exerts a force on the kite
Given:
AgCl (s) ===> Ag+ (aq) + Cl- (aq)
- negative entropy
H2O(g) ===> H2O(l)
- positive entropy
2Na (s) + Cl2 (g) ===> 2NaCl (s)
- positive entropy
Br2(l) ===> Br2 (s)
-positive entropy
They are identified to have positive or negative values of entropy based on the phases of the reactants and products.
Steps:
Mw = w * R * T / p * V
T = 88 + 273 => 361 K
p = 975 mmHg in atm :
1 atm = 760 mmHg
975 mmg / 760 mmHg => 1.28 atm
Therefore:
= 0.827 * 0.0821 * 361 / 1.28 * 0.270
= 24.51 / 0.3456
molar mass = 70.92 g/mol
Answer: The bond of molecule AB is then best described as a covalent bond
Explanation: The bond molecule AB is covalent because the difference in their electronegativity is not very big
You need to use the ideal gas law (PV=nRT) and solve for n. ((3.50atm•10.0L)/(0.0821(L•atm/mol•K)•304K) = n = 1.40 moles. 1 mole of Cl2 = 70.9 gm/mole. The mass would be 99.43 gm