3.16 X 10^-11 M is the [OH-] concentration when H3O+ = 1.40 *10^-4 M.
Explanation:
data given:
H30+= 1.40 X 10^-4 M\
Henderson Hasslebalch equation to calculate pH=
pH = -log10(H30+)
putting the values in the equation:
pH = -log 10(1.40 X 10^-4 M)
pH = 3.85
pH + pOH =14
pOH = 14 - 3.85
pOH = 10.15
The OH- concentration from the pOH by the equation:
pOH = -log10[OH-]
10.5= -log10[OH-]
[OH-] = 10^-10.5
[OH-] = 3.16 X 10^-11 is the concentration of OH ions when hydronium ion concentration is 1.40 *10^-4 M.
<h3>
Answer:</h3>
Anion present- Iodide ion (I⁻)
Net ionic equation- Ag⁺(aq) + I⁻(aq) → AgI(s)
<h3>
Explanation:</h3>
In order to answer the question, we need to have an understanding of insoluble salts or precipitates formed by silver metal.
Additionally we need to know the color of the precipitates.
Some of insoluble salts of silver and their color include;
- Silver chloride (AgCl) - white color
- Silver bromide (AgBr)- Pale cream color
- Silver Iodide (AgI) - Yellow color
- Silver hydroxide (Ag(OH)- Brown color
With that information we can identify the precipitate of silver formed and identify the anion present in the sample.
- The color of the precipitate formed upon addition of AgNO₃ is yellow, this means the precipitate formed was AgI.
- Therefore, the anion that was present in the sample was iodide ion (I⁻).
- Thus, the corresponding net ionic equation will be;
Ag⁺(aq) + I⁻(aq) → AgI(s)
<span>If the water faucet is opened, then the amount of water flowing will increase. </span>
Covalent bonds are formed when electrons are shared between elements that are nonmetals. The ammonium ion, NH+4 , would have covalent bonds because both nitrogen and hydrogen are nonmetals. ... So, the bond between this particular hydrogen atom and the central nitrogen is a dative covalent bond.
<em>Calculate the pH of the following substances formed during a volcanic eruption:
</em>
<em>• Acid rain if the [H +] is 1.9 x 10-5
</em>
<em>• Sulfurous acid if [H +] = 0.10
</em>
<em>• Nitric acid if [H +] = 0.11</em>
<em />
<h3>Further explanation </h3>
pH is the degree of acidity of a solution that depends on the concentration of H⁺ ions. The greater the value the more acidic the solution and the smaller the pH.
pH = - log [H⁺]
![\tt pH=-log[1.9\times 10^{-5}]\\\\pH=5-log1.9\\\\pH=4.72](https://tex.z-dn.net/?f=%5Ctt%20pH%3D-log%5B1.9%5Ctimes%2010%5E%7B-5%7D%5D%5C%5C%5C%5CpH%3D5-log1.9%5C%5C%5C%5CpH%3D4.72)
![\tt pH=-log[10^{-1}]\\\\pH=1](https://tex.z-dn.net/?f=%5Ctt%20pH%3D-log%5B10%5E%7B-1%7D%5D%5C%5C%5C%5CpH%3D1)
![\tt pH=-log[11\times 10^{-2}]\\\\pH=2-log~11=0.959](https://tex.z-dn.net/?f=%5Ctt%20pH%3D-log%5B11%5Ctimes%2010%5E%7B-2%7D%5D%5C%5C%5C%5CpH%3D2-log~11%3D0.959)