The roots of the polynomial <span><span>x^3 </span>− 2<span>x^2 </span>− 4x + 2</span> are:
<span><span>x1 </span>= 0.42801</span>
<span><span>x2 </span>= −1.51414</span>
<span><span>x3 </span>= 3.08613</span>
x1 and x2 are in the desired interval [-2, 2]
f'(x) = 3x^2 - 4x - 4
so we have:
3x^2 - 4x - 4 = 0
<span>x = ( 4 +- </span><span>√(16 + 48) </span>)/6
x_1 = -4/6 = -0.66
x_ 2 = 2
According to Rolle's theorem, we have one point in between:
x1 = 0.42801 and x2 = −1.51414
where f'(x) = 0, and that is <span>x_1 = -0.66</span>
so we see that Rolle's theorem holds in our function.
Answer:
6
Step-by-step explanation:
If x is the number of 1/8 yard long pieces, then the total length is x * 1/8. We know that the total length is 3/4 yards. Therefore:
x * 1/8 = 3/4
Divide:
x = (3/4) / (1/8)
To divide a fraction, multiply by its reciprocal:
x = (3/4) * (8/1)
x = 24/4
x = 6
She has 6 pieces.
Answer:
she had $60 before she went for shopping
Step-by-step explanation:
PLZ MARK BRAINLIEST
Let x represent the amount of money that Victoria had before she went for shopping.
Victoria spent one-fourth or her birthday money on clothes. It means that the amount she spent on shopping is 1/4 × x = x/4. Amount that she was having left would be x - x/4 = 3x/4
She received another 25$ a week later. The amount that she is having at this point will be 3x/4 + 25
If she has a total of 70$ now, it means that
3x/4 + 25 = 70
Multiplying through by 4
3x + 100 = 280
3x ,= 280 - 100 = 180
x = 180/3 = 60
Answer:
240 miles
Step-by-step explanation:
he drives 30 miles there and back which is 60 miles and 6 times 4 is 24 so 60 times 4 is 240