Answer:
7) p=80
8)z= 19.2
Step-by-step explanation:
7th problem)
0.1p=8
p *
=8
=8
p=80
8th problem)
=8
z=8*2.4
z=19.2
Sum/difference:
Let

This means that

Now, assume that
is rational. The sum/difference of two rational numbers is still rational (so 5-x is rational), and the division by 3 doesn't change this. So, you have that the square root of 8 equals a rational number, which is false. The mistake must have been supposing that
was rational, which proves that the sum/difference of the two given terms was irrational
Multiplication/division:
The logic is actually the same: if we multiply the two terms we get

if again we assume x to be rational, we have

But if x is rational, so is -x/15, and again we come to a contradiction: we have the square root of 8 on one side, which is irrational, and -x/15 on the other, which is rational. So, again, x must have been irrational. You can prove the same claim for the division in a totally similar fashion.
Answer:
1 - If method I is used, population of generalization will include all those people who may have varying exercising habits or routines. They may or may not have a regular excersing habit. In his case sample is taken from a more diverse population
2 - Population of generalization will include people who will have similar excersing routines and habits if method II is used since sample is choosen from a specific population
Step-by-step explanation:
Past excercising habits may affect the change in intensity to a targeted excersise in different manner. So in method I a greater diversity is included and result of excersing with or without a trainer will account for greater number of variables than method II.
A photo of 6 and 8 is scaled down to 1/2 the size
To find this, you multiply both by 1/2 or divide by 2
The new dimensions are 3 by 4
6 divided by 2=3
8 divided by 2=4
Answer:
The second option (see attached image)
Step-by-step explanation:
You are looking for a box diagram that represents 9 units, and from those, clearly marked sections that contain 3/2 = 1.5 units.The idea is to count how many 1.5 units you have in 9 units.
The in the second diagram you see 9 boxes subdivided in half. Then outlined in red other smaller boxes of length 1.5 units. We can clearly see from the diagram that there are exactly 6 of these smaller 1.5 units red boxes to produce the total 9 unit object.