Explanation:
amazing that you learned a lot of great ideas on your summary business you well from to and as learned that they can do well with their lives for you in the past few they will be a child whose mass is the best thing) )for
Answer:
L' = 555.95 lb
Explanation:
Analyzing the given conditions in the question, we get
The safe load, L is directly proportional to width (w) and square of depth (d²)
also,
L is inversely proportional length (l) i.e L = k/l
combining the above conditions, we get an equation as:
L = k(wd²/l)
now, for the first case we have been given
w = 3 in
d = 6 in
l = 11 ft
L = 1213 lbs
thus,
1213 lb = k ((3 × 6²)/11)
or
k = 123.54 lbs/(ft.in³)
Now,
Using the calculated value of k to calculate the value of L in the second case
in the second case, we have
w = 6 in
d =3 in
l = 12 ft
Final Safe load L' = 123.54 × (6 × 3²/12)
or
L' = 555.95 lb
The correct answer for the question that is being presented above is this one: "Schmidt-Cassegrain focus." A focal arrangement that has a thin lens that the light passes through before traveling down the tube to the objective mirror is a Schmidt-Cassegrain focus.
Here are the following choices:
a. Cassegrain focus
b. Newtonian focus
c. Schmidt-Cassegrain focus
<span>d. Schmidt focus</span>
When both particles, the electron and the proton move at the same speed, they may have differences with their de Broglie wavelength, the particle that would have a longer wavelength would be the proton since the wavelength is in direct proportionality with the mass of the particle.
Answer:
1/8
Explanation:
17,100 years is 3 times the half-life of 5,700 years. After each half-life, half remains, so the amount remaining after 3 half-lives is ...
(1/2)(1/2)(1/2) = 1/8
1/8 of the sample remains after 17,100 years.