I’m not that smart... but let me use first as example.. 240 divided by 4
Answer:

Step-by-step explanation:
In order to solve this problem we must start by graphing the given function and finding the differential area we will use to set our integral up. (See attached picture).
The formula we will use for this problem is the following:

where:


a=0

so the volume becomes:

This can be simplified to:

and the integral can be rewritten like this:

which is a standard integral so we solve it to:
![V=9\pi[tan y]\limits^\frac{\pi}{3}_0](https://tex.z-dn.net/?f=V%3D9%5Cpi%5Btan%20y%5D%5Climits%5E%5Cfrac%7B%5Cpi%7D%7B3%7D_0)
so we get:
![V=9\pi[tan \frac{\pi}{3} - tan 0]](https://tex.z-dn.net/?f=V%3D9%5Cpi%5Btan%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20-%20tan%200%5D)
which yields:
]
Answer:
676 cubic cm choice d
Step-by-step explanation:
Base area times height gets volume
Base area = (1/2)*13 * 8 = 52 sq. cm (area of the right triangle)
height = 13 cm here
Volume = 13 cm * 52 sq. cm = 676 cubic cm
By the binomial theorem,

I assume you meant to say "independent", not "indecent", meaning we're looking for the constant term in the expansion. This happens for k such that
12 - 3k = 0 ===> 3k = 12 ===> k = 4
which corresponds to the constant coefficient
