Answer:
1) positive
2) carbocation
3) most stable
4) faster
Explanation:
A common test for the presence of alcohols can be achieved using the Lucas reagent. Lucas reagent is a mixture of concentrated hydrochloric acid and zinc chloride.
The reaction of Lucas reagent reacts with alcohols leading to the formation of an alkyl chloride. Since the reaction proceeds via a carbocation mechanism, tertiary alcohols give an immediate reaction. Once a tertiary alcohol is mixed with Lucas reagent, the solution turns cloudy almost immediately indicating an instant positive reaction.
Secondary alcohols may turn cloudy within five minutes of mixing the solutions. Primary alcohols do not significantly react with Lucas reagent obviously because they do not form stable carbocations.
Therefore we can use the Lucas reagent to distinguish between primary, secondary and tertiary alcohols.
Answer:
0.01144L or 1.144x10^-2L
Explanation:
Data obtained from the question include:
V1 (initial volume) = 20.352 mL
P1 (initial pressure) = 680mmHg
P2 (final pressure) = 1210mmHg
V2 (final volume) =.?
Using the Boyle's law equation P1V1 = P2V2, the volume of the container can be obtained as follow:
P1V1 = P2V2
680 x 20.352 = 1210 x V2
Divide both side by 1210
V2 = (680 x 20.352)/1210
V2 = 11.44mL
Now we need to convert 11.44mL to L in order to obtain the desired result. This is illustrated below:
1000mL = 1 L
11.44mL = 11.44/1000 = 0.01144L
Therefore the volume of the container is 0.01144L or 1.144x10^-2L
Answer:
23.34 %.
Explanation:
- The percentage of water must be calculated as a mass percent.
- We need to find the mass of water, and the total mass in one mole of the compound. For that we need to use the atomic masses of each element and take in consideration the number of atoms of each element in the formula unit.
- <em>Atomic masses of the elements:</em>
Cd: 112.411 g/mol, N: 14.0067 g/mol, O: 15.999 g/mol, and H: 1.008 g/mol.
- <em>Mass of the formula unit:</em>
Cd(NO₃)₂•4H₂O
mass of the formula unit = (At. mass of Cd) + 2(At. mass of N) + 10(At. mass of O) + 8(At. mass of H) = (112.411 g/mol) + 2(14.0067 g/mol) + 10(15.999 g/mol) + 8(1.008 g/mol) = 308.5 g/mol.
- <em> Mass of water in the formula unit:</em>
<em>mass of water</em> = (4 × 2 × 1.008 g/mol) + (4 × 15.999 g/mol) = 72.0 g/mol.
- <em>So, the percent of water in the compound = [mass of water / mass of the formula unit] × 100 = [(72.0 g/mol)/(308.5 g/mol)] × 100 = 23.34 %</em>
Answer:
0.0000159
Explanation:
Divide 15.9 by 1000000, because 1 kilometer equals 1000000 millimeters.
Remark
The short Answer is 6. That's why the ion has a charge of minus 2. Oxygen is doing it's best to have its outer ring have 8 electrons which is the number of outer electrons contained in the outer ring of the Noble Gas Neon.
Answer 6.