Answer:
5.231 L.
Explanation:
- Molarity is the no. of moles of solute per 1.0 L of the solution.
<em>M = (no. of moles of KCl)/(Volume of the solution (L))</em>
<em></em>
M = 6.5 M.
no. of moles of solute = 34.0 mol,
Volume of the solution = ??? L.
∴ (6.5 M) = (34.0 mol)/(Volume of the solution (L))
∴ (Volume of the solution (L) = (34.0 mol)/(6.5 M) = 5.231 L.
Explanation:
The transuranium elements are produced by the capture of neutrons
<u>Hope</u><u> </u><u>it</u><u> </u><u>will</u><u> </u><u>help</u><u> </u><u>you</u>
B is true because liquids are still more compact than gases, although they are loose, they aren't completely free. They also don't have a definite volume, making them assume the shape of their container. As for compression, liquids are harder to compress compared to gases.
Answer:
Mn(s)/Mn^2+(aq)//Co^2+(aq)/Co(s)
Explanation:
In writing the cell notation for an electrochemical cell, the anode is written on the left hand side while the cathode is written on the right hand side. The two half cells are separated by two thick lines which represents the salt bridge.
For the cell discussed in the question; the Mn(s)/Mn^2+(aq) is the anode while the Co^2+(aq)/Co(s) half cell is the cathode.
Hence I can write; Mn(s)/Mn^2+(aq)//Co^2+(aq)/Co(s)
- C_5H_8+13/2O_2—»5CO_2+4H_2O
Balanced one
- 2C_5H_8+13O_2—»10CO_2+8H_2O
Moles of Pentyne
- Given mass/Molarmass
- 34/68
- 0.5mol
Moles of H_2O
1mol releases 241.8KJ
2mol releases 241.8(2)=483.6KJ