Answer:
In general, the magnetic field is strongest close to the wire and weaker farther away. In fact, the magnetic field weakens as 1/r1/r where rr is the distance from the wire. This can change a bit depending on the length and shape of the wire. Far enough away, the magnetic field decays as 1/r21/r2 .
Answer:
284.48 g/mol
Explanation:
You can find the molar mass of any molecule by looking at a periodic table and adding up all of the masses of each element. When you do this with stearic acid, you get somewhere around 284.5 g/mol. Hope this helped!
option A.
The number of valence electrons of an element can be determined by the periodic table group (vertical column) in which the element is categorized
So, we have:
- molecular weight
- shape
- temperature
- kinetic energy
- mass
- density
Let's rule out the different options.
- molecular weight: Say you have a molecule of H2O. H2O can be a solid, liquid, or gas, but its molecular weight never changes throughout (It's still the same molecule, no matter what phase it is in). We can rule this out.
- shape: Let's pretend we have three identical closed containers, and we fill each one halfway with water, blocks of ice cubes, and water vapor. In the container with water, you will see that the water takes the shape of the container, but doesn't fill the entire container up. The ice cubes will stay ice cubes, assuming they don't melt, so they don't take the shape of the container. The vapor will fill up the entire container. Since all three are different, I would say yes, this could be a distinguishable feature.
- temperature: In general, I would say no, because every element/molecule has different boiling points and different vaporization points. So if you have a liquid at 5°C, you could also have a different element in solid form at 5°C. But if you're comparing a single type of molecule, it would have a boiling point and a vaporization point, so you <em>would</em> be able to tell between them.
- kinetic energy: Kinetic energy refers to how much movement there is in respect to each molecule. In solids, the molecules are packed tightly together and can't move very much, so they have lower kinetic energy. In liquids, they are less packed, but still restricted. And in gases, they can fly freely, so they will have much more kinetic energy than liquids or solids. This one's a yes.
- mass: No matter what form, there are still the same amount of molecules, and each molecule has the same mass as before. It won't change.
- density: Since the molecules are more spread out in gases, it will be less dense. Liquids will be more dense, and solids will have the greatest density. So, yes.
Conclusion: shape, kinetic energy, density, (and temperature if it's talking about a single type of molecule)
<span>0.570 M (note the capital M, this is molarity. Using m denotes molality.
Molarity is represented by moles of solute over the liters of solution. In this problem we are given the mass of the solute and volume of solution. The calculations is follows:
(15.7 g CaCO3/275 mL of solution) x (1 mole CaCO3/ 100.0869 g of CaCO3) x (1000 mL of solution/ 1 L of solution) = 0.570 M CaCo3.</span>