Use binomial distribution, with p=0.20, n=20, x=3
P(X=x)=C(n,x)p^x (1-p)^(n-x)
P(X>=3)
=1-(P(X=0)+P(X=1)+P(X=2))
=1-(C(20,0)0.2^0 (0.8)^(20-0)+C(20,1)0.2^1 (0.8)^(20-1)+C(20,2)0.2^2 (0.8)^(20-2))
=1-(0.0115292+0.057646+0.136909)
=1-0.206085
=0.793915
Answer:
$1,150
Step-by-step explanation:
<u>Step 1: Find the total new members</u>
40 - 10
30 new members
<u>Step 2: Add them to the total</u>
30 + 200
230 total members
<u>Step 3: Find the money earned</u>
230 * 5
$1,150
Answer: $1,150
Answer:General Formulas and Concepts:
<u>Pre-Calculus</u>
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Integration
- Integrals
- Definite/Indefinite Integrals
- Integration Constant C
Integration Rule [Reverse Power Rule]:
Integration Rule [Fundamental Theorem of Calculus 1]:
U-Substitution
- Trigonometric Substitution
Reduction Formula:
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
<u>Step 2: Integrate Pt. 1</u>
<em>Identify variables for u-substitution (trigonometric substitution).</em>
- Set <em>u</em>:
- [<em>u</em>] Differentiate [Trigonometric Differentiation]:
- Rewrite <em>u</em>:
<u>Step 3: Integrate Pt. 2</u>
- [Integral] Trigonometric Substitution:
- [Integrand] Rewrite:
- [Integrand] Simplify:
- [Integral] Reduction Formula:
- [Integral] Simplify:
- [Integral] Reduction Formula:
- [Integral] Simplify:
- [Integral] Reverse Power Rule:
- Simplify:
- Back-Substitute:
- Simplify:
- Rewrite:
- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Book: College Calculus 10e