According to Kepler's second law of orbital motion, a plane's orbital speed changes , depending on how far it is from the sun. The closer a planet is to the sun, the stronger the sun's gravitational pull on it, and the faster the planet moves. The farther away from the sun, the weaker the sun's gravitational pull and the slower it moves in its orbit.
The orbit of a planet around the sun is not a perfect circle, but an ellipse - a flattened circle.
Evaporation technique is used to separate a compound dissolved in a solvent by vaporizing the solvent and converting it to gaseous state. This leaves behind the solid residue present in the solution after the pure solvent is vaporized. The solvent vapors can be collected and condensed to get pure solvent. But the solid residue cannot be considered pure as it is the left over solid after all the solvent is evaporated. If the solution has some impurities, the solid left over includes all of the impurities. So, we cannot obtain a pure solid in evaporation technique.
An electron is a negatively charged subatomic particle, whereas a proton is positively charged, and a neutron has no charge.
If the earth's orbit is far from the sun, then, its rate will be slower than when it is closer to the Sun. When gravitational field lines get closer together,
the magnetic force is strong. We
know that the heavier the body is, the stronger its gravitational pull.<span>
</span>
Answer:
State the major concepts behind the kinetic molecular theory of gases.
Demonstrate the relationship between kinetic energy and molecular speed.
Apply the kinetic molecular theory to explain and predict the gas laws.
Explanation: