pretty sure its True hope this helped
Explanation:
A magnet has two ends called poles; one end is the north pole and the other is the south pole. A north pole will attract a south pole; the magnets pull on each other. But the two north poles will push each other away. ... The magnet is attracted by the earth's magnetic north pole and always points in that direction.
Answer:
This solution is quite lengthy
Total system = nRT
n was solved to be 0.02575
nH20 = 0.2x0.02575
= 0.00515
Nair = 0.0206
PH20 = 0.19999
Pair = 1-0.19999
= 0.80001
At 15⁰c
Pair = 0.4786atm
I used antoine's equation to get pressure
The pressure = 0.50
2. Moles of water vapor = 0.0007084
Moles of condensed water = 0.0044416
Grams of condensed water = 0.07994
Please refer to attachment. All solution is in there.
Answer & Explanation:
Los electrones externos se encuentran más lejos del núcleo. El número de electrones en la capa más externa (electrones de valencia) de un átomo en particular determina su reactividad (tendencia) a formar enlaces químicos con otros átomos.
Los electrones internos son los más cercanos al núcleo. Protegen los electrones de valencia del núcleo, reduciendo la carga nuclear efectiva.
Answer:
See the explanation
Explanation:
In this case, in order to get an <u>elimination reaction</u> we need to have a <u>strong base</u>. In this case, the base is the phenoxide ion produced the phenol (see figure 1).
Due to the resonance, we will have a more stable anion therefore we will have a less strong base because the negative charge is moving around the molecule (see figure 2).
Finally, the phenoxide will attack the <u>primary carbon</u> attached to the Cl. The C-Cl bond would be broken and the C-O would be produced <u>at the same time</u> to get a substitution (see figure 1).
Answer:

Explanation:
It is given that,
Original temperature, 
Original volume, 
We need to find the temperature if the volume of the balloon to be shrink to 1.25 L.
According to Charles law, at constant pressure, 
It would means, 
T₂ = ?

So, the new temperature is 261.46 K.