Answer:
The answer is 98.07848. We assume you are converting between grams H2SO4 and mole. You can view more details on each measurement unit: This compound is also known as Sulfuric Acid. The SI base unit for amount of substance is the mole. 1 grams H2SO4 is equal to 0.010195916576195 mole.
<u>Quick conversion chart of moles H2SO3 to grams</u>
1 moles H2SO3 to grams = 82.07908 grams
2 moles H2SO3 to grams = 164.15816 grams
3 moles H2SO3 to grams = 246.23724 grams
4 moles H2SO3 to grams = 328.31632 grams
5 moles H2SO3 to grams = 410.3954 grams
6 moles H2SO3 to grams = 492.47448 grams
7 moles H2SO3 to grams = 574.55356 grams
8 moles H2SO3 to grams = 656.63264 grams
9 moles H2SO3 to grams = 738.71172 grams
10 moles H2SO3 to grams = 820.7908 grams
Answer:
4. +117,1 kJ/mol
Explanation:
ΔG of a reaction is:
ΔGr = ΔHr - TΔSr <em>(1)</em>
For the reaction:
2 HgO(s) → 2 Hg(l) + O₂(g)
ΔHr: 2ΔHf Hg(l) + ΔHf O₂(g) - 2ΔHf HgO(s)
As ΔHf of Hg(l) and ΔHf O₂(g) are 0:
ΔHr: - 2ΔHf HgO(s) = <u><em>181,66 kJ/mol</em></u>
<u><em /></u>
In the same way ΔSr is:
ΔSr= 2ΔS° Hg(l) + ΔS° O₂(g) - 2ΔS° HgO(s)
ΔSr= 2* 76,02J/Kmol + 205,14 J/Kmol - 2*70,19 J/Kmol
ΔSr= 216,8 J/Kmol = <em><u>0,216 kJ/Kmol</u></em>
Thus, ΔGr at 298K is:
ΔGr = 181,66 kJ/mol - 298K*0,216kJ/Kmol
ΔGr = +117,3 kJ/mol ≈ <em>4. +117,1 kJ/mol</em>
<em></em>
I hope it helps!
I’m not sure what the answer is but I hope someone can help you
Explanation:
The given data is as follows.
Mass of antimony = 19.75 g
Molar mass of Sb = 121.76 g/mol
Therefore, calculate number of moles of Sb as follows.
Moles of Sb = 
= 
= 0.162 mol
Mass of oxygen given is 6.5 g and molar mass of oxygen is 16 g/mol. Hence, moles of oxygen will be calculated as follows.
Moles of oxygen = 
= 
= 0.406 mol
Hence, ratio of moles of Sb and O will be as follows
Sb : O
1 : 2.5
We multiply both the ratio by 2 in order to get a whole number. Therefore, the ratio will be 2 : 5.
Thus, we can conclude that the empirical formula of the given oxide is
.
Answer: -
H₂ will diffuse the fastest.
Explanation: -
According to Graham's Law of Diffusion
The rate of diffusion is inversely proportional to the square root of it's density or molar mass. So the lower the molar mass faster the rate of diffusion.
Molar mass of Ne = 20 g / mol
Molar mass of CH₄ = 12 x 1 + 1 x 4 = 16 g /mol
Molar mass of Ar = 40g / mol
Molar mass of H₂ = 1 x 2 = 2 g / mol
Thus H₂ will diffuse the fastest.