Answer:
v = 8.4 m/s
Explanation:
The question ays, "A longitudinal wave has a frequency of 200 Hz and a wavelength of 4.2m. What is the speed of the wave?".
Frequency of a wave, f = 200 Hz
Wavelength = 4.2 cm = 0.042 m
We need to find the speed of the wave. The formula for the speed of a wave is given by :

So, the speed of the wave is equal to 8.4 m/s.
Answer: D)supersaturated
Explanation: Solubility is defined as the amount of solute in grams which can dissolve in 100 g of the liquid to form a saturated solution at that particular temperature.
At
, the solubility of
is 153g/100 ml.
Thus if 180 grams is dissolved, it contains more amount of solute than it can hold at that that temperature, and thus is supersaturated solution.
A saturated solution is a solution containing the maximum concentration of a solute dissolved in the solvent. The additional solute does not dissolve in a saturated solution.
An unsaturated solution is solution in which the solute concentration is lower than its equilibrium solubility.
A supersaturated solution is one that has more solute than it can hold at a certain temperature.
Answer:
Explanation:
a)
Firstly to calculate the total mass of the can before the metal was lowered we need to add the mass of the eureka can and the mass of the water in the can. We don't know the mass of the water but we can easily find if we know the volume of the can. In order to calculate the volume we would have to multiply the area of the cross section by the height. So we do the following.
100
x 10cm = 1000
Now in order to find the mass that water has in this case we have to multiply the water's density by the volume, and so we get....
x 1000
= 1000g or 1kg
Knowing this, we now can calculate the total mass of the can before the metal was lowered, by adding the mass of the water to the mass of the can. So we get....
1000g + 100g = 1100g or 1.1kg
b)
The volume of the water that over flowed will be equal to the volume of the metal piece (since when we add the metal piece, the metal piece will force out the same volume of water as itself, to understand this more deeply you can read the about "Archimedes principle"). Knowing this we just have to calculate the volume of the metal piece an that will be the answer. So this time in order to find volume we will have to divide the total mass of the metal piece by its density. So we get....
20g ÷
= 2.5 
c)
Now to find out the total mass of the can after the metal piece was lowered we would have to add the mass of the can itself, mass of the water inside the can, and the mass of the metal piece. We know the mass of the can, and the metal piece but we don't know the mass of the water because when we lowered the metal piece some of the water overflowed, and as a result the mass of the water changed. So now we just have to find the mass of the water in the can keeping in mind the fact that 2.5
overflowed. So now we the same process as in number a) just with a few adjustments.
x (1000
- 2.5
) = 997.5g
So now that we know the mass of the water in the can after we added the metal piece we can add all the three masses together (the mass of the can. the mass of the water, and the mass of the metal piece) and get the answer.
100g + 997.5g + 20g = 1117.5g or 1.1175kg
Answer: 
Explanation:
The diffraction angles
when we have a slit divided into
parts are obtained by the following equation:
(1)
Where:
is the width of the slit
is the wavelength of the light
is an integer different from zero.
Now, the second-order diffraction angle is given when
, hence equation (1) becomes:
(2)
Now we have to find the value of
:
(3)
Then:
(4)
(5)
Finally:
(6)