1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vitfil [10]
3 years ago
8

An artist wants to frame a square painting with an area of 400 square inches. She wants to know the length of the wood trim that

is needed to go around the painting.
if x is the length of one side of the painting what equation can you set up to find the length of a side?
Mathematics
1 answer:
Maurinko [17]3 years ago
5 0
Area=legnth times width

if legnth=x
and
area=400

400=x times width

wait
SQUARE painting
legnth=width
width=x

400=x times x
400=x^2
sqrt both sides
20=x
answer is 20 in

equation is
400=x times x
You might be interested in
A board game has a spinner divided into sections of equal size. Each section is labeled with a number between 1 and 5. Which num
Valentin [98]

Answer:

75

Step-by-step explanation:

first, there are three 5's on the spinner, with a total of 12 sections. 3/12 = 0.25, so you multiply 0.25 times 300 (the total spins) and get 75

3 0
3 years ago
What's cot(-180)<br><img src="https://tex.z-dn.net/?f=%20%5Ccot%28%20-%20180%29%20" id="TexFormula1" title=" \cot( - 180) " alt=
kakasveta [241]
The answer is ~ 0.746999
6 0
3 years ago
PLEASE ANSWER ASASP!!!!!!<br> 5(x + 4) = 25<br> what is x?
coldgirl [10]

Answer: x=1

Step-by-step explanation:

Trust me ;)

6 0
3 years ago
Read 2 more answers
A 34-foot pole casts a 30-foot shadow. At the same time, a nearby tree casts a 24-foot shadow. How tall is the tree?
artcher [175]

Answer:

27.2 ft

Step-by-step explanation:

Let's set up a ratio that represents the problem:

Object's Height (ft) : Shadow (ft)

Substitute with the dimensions of the 34 foot pole and its 30 foot shadow.

34 : 30

Find the unit rate:

The unit rate is when one number in a ratio is 1.

Let's make the Shadow equal to one by dividing by 30 on both sides.

Object's Height (ft) : Shadow (ft)

34 : 30

/30  /30

1.13 : 1

Now, let's multiply by 24 on both sides to find the height of the tree.

Multiply:

Object's Height (ft) : Shadow (ft)

1.13 : 1

x24  x24

27.2 : 24

Therefore, the tree is 27.2 feet tall.

7 0
3 years ago
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
Other questions:
  • A train traveled 325 miles in 5 hours .what was the the trains average rate of speed in miles per hour
    11·2 answers
  • Write the Taylor Series for f(x) = sin(x)center
    8·1 answer
  • Find the volume of a right circular cone that has a height of 4.3 m and a base with a circumference of 17.6 m. Round your answer
    5·1 answer
  • One pattern starts at 0 and follows the rule "add 2". Another pattern starts at 0 and follows the rule "add 5". Write the first
    10·2 answers
  • What transformations were applied to ABC to obtain A’B’C’
    15·2 answers
  • !!!PLEASE HELP WILL GIVE BRAINLIEST EASY!!!
    12·2 answers
  • Carl hits the target 50% pf the time he throws a ball at it. Carl uses a coin to simulate his next three pitches. The assigns H
    10·1 answer
  • Set A contains 35 elements and set B contains 22 elements. If there are 40 elements in (A ∪ B) then how many elements are in (A
    15·1 answer
  • Please help me understand
    8·1 answer
  • Find A∩B,given A={0,2,4,6,8}and B={-2,-4}
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!