Answer:
a) Mean = 27.65
Median = 27.645
b) Relative Frequency = 33.33%
Step-by-step explanation:
We are given the following data set:
25.78, 21.06, 36.54, 29.51, 18.96, 34.05
a) Mean and Median
![Mean = \displaystyle\frac{\text{Sum of all observations}}{\text{Total number of observation}}](https://tex.z-dn.net/?f=Mean%20%3D%20%5Cdisplaystyle%5Cfrac%7B%5Ctext%7BSum%20of%20all%20observations%7D%7D%7B%5Ctext%7BTotal%20number%20of%20observation%7D%7D)
![Mean =\displaystyle\frac{165.9}{6} = 27.65](https://tex.z-dn.net/?f=Mean%20%3D%5Cdisplaystyle%5Cfrac%7B165.9%7D%7B6%7D%20%3D%2027.65)
Sorted data: 18.96, 21.06, 25.78, 29.51, 34.05, 36.54
![\text{Median} = \displaystyle\frac{25.78 +29.51}{2} = 27.645](https://tex.z-dn.net/?f=%5Ctext%7BMedian%7D%20%3D%20%5Cdisplaystyle%5Cfrac%7B25.78%20%2B29.51%7D%7B2%7D%20%3D%2027.645)
b) BMI above 30 is considered obese
Frequency of obese in the given sample = 2
Relative Frequency =
![\displaystyle\frac{\text{Frequency of obese}}{\text{Total number}} = \frac{2}{6} = 0.3333 = 33.33\%](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cfrac%7B%5Ctext%7BFrequency%20of%20obese%7D%7D%7B%5Ctext%7BTotal%20number%7D%7D%20%3D%20%5Cfrac%7B2%7D%7B6%7D%20%3D%200.3333%20%3D%2033.33%5C%25)