To determine the shapes of molecules, we must become acquainted with the Lewis electron dot structure. Although the Lewis theory does not determine the shapes of molecules, it is the first step in predicting shapes of molecules. The Lewis structure helps us identify the bond pairs and the lone pairs.
Please mark BRAINLIEST.
1. The answer is E.
2. I agree with your answers.
3. I also agree with your answers
Answer:
45 meters
Explanation:
If it takes the slug 20 minutes to travel 15 meters, you multiply the 15 by three to get the distance for 60 minutes.
Answer:
shorter wavelength = alpha wave
Explanation:
Given that,
The alpha wave has a frequency of 5 Hz and the beta wave has a frequency of 2 Hz.
We need to compare the wavelengths of these two waves.
For alpha wave,

For beta wave,

From the above calculations, we find that the wavelength of the alpha wave is shorter than the wavelength of the beta wave.
Answer:
1) The bubbles will grow, and more may appear.
2)Can A will make a louder and stronger fizz than can B.
Explanation:
When you squeeze the sides of the bottle you increase the pressure pushing on the bubble, making it compress into a smaller space. This decrease in volume causes the bubble to increase in density. When the bubble increases in density, the bubble will grow and more bubbles will appear. Therefore, Changing the pressure (by squeezing the bottle) changes the volume of the bubbles. The number of bubbles doesn't change, just their size increases.
Carbonated drinks tend to lose their fizz at higher temperatures because the loss of carbon dioxide in liquids is increased as temperature is raised. This can be explained by the fact that when carbonated liquids are exposed to high temperatures, the solubility of gases in them is decreased. Hence the solubility of CO2 gas in can A at 32°C is less than the solubility of CO2 in can B at 8°C. Thus can A will tend to make a louder fizz more than can B.