Answer:
Here:
Explanation:
To familiarize students with experimental apparatus, the scientific method, and methods of data analysis so that they will have some idea of the inductive process by which the ideas were originated. To teach how to make careful experimental observations and how to think about and draw conclusions from such data.
Answer:
68133080.02 g
Explanation:
I believe that the question is to find the mass of air in the room and not the molar mass of air since the molar mass of air was already given in the question as 28.97 g/mol.
Now, if 1 mole of a gas occupies 22.4 L
x moles of air occupies 52,681,428.8 Liters
x = 1 * 52,681,428.8 /22.4
x = 2351849.5 moles of air
Now, number of moles = mass/ molar mass
but molar mass = 28.97 g/mol
2351849.5 = mass/28.97
mass = 2351849.5 * 28.97
mass = 68133080.02 g
The answer is (4). You may recall the term "radiometric dating," which refers to the dating of old artifacts by measuring proportions of certain radioactive isotopes they contain and making calculations based on their estimated half-lives. Geological formations are dated in this way.
。☆✼★ ━━━━━━━━━━━━━━ ☾
If it loses 1 electron, it will now have 1 more proton than electrons.
Thus, the charge would be 1+
Have A Nice Day ❤
Stay Brainly! ヅ
- Ally ✧
。☆✼★ ━━━━━━━━━━━━━━ ☾
A 3.1 L sample of hydrogen <u>d. contains the same number of molecules</u>
as 3.1 L of carbon dioxide at the same temperature and pressure.
This is the fundamental principle of <em>Avogadro’s hypothesis</em>: equal volume of gases at the same temperature and pressure contain the same number of molecules.
The sample of carbon dioxide has a <em>greater mass</em>, a <em>greater number of atoms</em>, and a <em>greater density</em>, than the sample of hydrogen.