Answer:
was difficult to place isotopes of elements as they have the same chemical properties but different atomic masses. It was not possible to predict how many elements could be discovered between two heavy elements as the rise in atomic mass is not uniform.
Answer:
In He2 molecule,
Atomic orbitals available for making Molecular Orbitals are 1s from each Helium. And total number of electrons available are 4.
Molecular Orbitals thus formed are:€1s2€*1s2
It means 2 electrons are in bonding molecular orbitals and 2 are in antibonding molecular orbitals .
Bond Order =Electrons in bonding molecular orbitals - electrons in antibonding molecular orbitals /2
Bond Order =Nb-Na/2
Bond Order =2-2/2=0
Since the bond order is zero so that He2 molecule does not exist.
Explanation:
Answer:(4) ----accepts a proton
Explanation:
H2O water can produce both hydrogen and hydroxide ions
H2O --> H+ + OH-
According to the Bronsted-Lowry theory, it can be a proton donor and a proton acceptor.this means that It can donate a hydrogen ion to become its conjugate base, or can accept a hydrogen ion to form its conjugate acid,
When , a water molecule, H2O accepts a proton it will act as a Brønsted-Lowry base especially when dissolved in a strong acidic medium. for eg
HCl + H2O(l) → H3O+(aq) + Cl−(aq)
Here, Hydrochloric acid is a strong acid and ionizes completely in water, since it is more acidic than water, the water will act as a base.
There are a couple of ways in which you can express the concentration of a solution, and here they are: gram per liter (g/L), molarity (M), parts per million (ppm.), and percents (%).
As you can see, only M appears in your answers, which means that the correct option should be (2) 3.5 M.
Answer: Electronegativity increases as the size of an atom decrease.
Explanation: Electronegativity is the measure of the ability of an atom in a bond to attract electrons to itself.
Electronegativity increases across a period and decreases down a group.
Towards the left of the table, valence shells are less than half full, so these atoms (metals) tend
to lose electrons and have low electronegativity. Towards the right of the table, valence shells are more than half full, so these atoms (nonmetals) tend to gain electrons and have high electronegativity.
Down a group, the number of energy levels (n) increases, and so does the distance between the nucleus and the outermost orbital. The increased distance and the increased shielding weaken the nuclear attraction, and so an atom can’t attract electrons as strongly.