Answer:
1.7×10^5 ms-1
Explanation:
From
qE= qvB
q= charge on the electron
E = electric field
v= velocity
B= magnetic field
E= vB
v= E/B= 110×10^3/0.6
v= 1.7×10^5 ms-1
Answer:
a = 4.96 m/s²
Explanation:
Given,
The mass of the box, m = 51 Kg
The magnitude of the applied force, Fₐ = 485 N
The friction force on the box, Fₓ = 232 N
The net force acting on the box is,
F = Fₐ - Fₓ
Substituting the given values in the above equation
F = 485 - 232
= 253 N
The acceleration of the crate is given by
a = F/m
= 253 / 51
= 4.96 m/s²
Hence, the acceleration of the crate is, a = 4.96 m/s²
Answer:
KE = 1.75 J
Explanation:
given,
mass of ball, m₁ = 300 g = 0.3 Kg
mass of ball 2, m₂ = 600 g = 0.6 Kg
length of the rod = 40 cm = 0.4 m
Angular speed = 100 rpm=
=10.47\ rad/s
now, finding the position of center of mass of the system
r₁ + r₂ = 0.4 m.....(1)
equating momentum about center of mass
m₁r₁ = m₂ r₂
0.3 x r₁ = 0.6 r₂
r₁ = 2 r₂
Putting value in equation 1
2 r₂ + r₂ = 0.4
r₂ = 0.4/3
r₁ = 0.8/3
now, calculation of rotational energy
KE = 1.75 J
the rotational kinetic energy is equal to 1.75 J
Answer: D(t)= 50(4/5)^t
Explanation: If 1/5 of the temperature difference is lost each minute, that means 4/5 of the difference remains each minute. So each minute, the temperature difference is multiplied by a factor of 4/5 (or 0.8).
If we start with the initial temperature difference, 50° Celsius, and keep multiplying by 4/5, this function gives us the temperature difference t minutes after the cake was put in the cooler.