The answer should be around 314.159. The formula is v=pi*r2*h. Plug in the numbers and its v=pi*25*4. That is 25*4 which is 100. Then *pi and it should be it.
The plotted point will be reflected across the y-axis.
Answer:
Step-by-step explanation:
From the first image attached below, we will see the sketch of the curve x = y² & x = 2y
In the picture connected underneath, the concealed locale(shaded region) is bounded by the given curves. Now, we discover the marks of the crossing point of the curves. These curves will cross, when:

Thus, the shaded region fall within the interval 0 ≤ y ≤ 2
Now, from the subsequent picture appended we sketch the solid acquired by turning the concealed region about the y-axis.
For the cross-sectional area of the washer:

Finally, the volume of (solid) is:
![V = \int^2_0 A(y) \ dy \\ \\ V = \int^2_0 \pi (4y^2 -y^4) \ dy \\ \\ V = \pi \int^2_0 (4y^2 -y^4) \ dy \\ \\ V = \pi \Big[\dfrac{4}{3}y^3 - \dfrac{y^5}{5} \big ] ^2_0 \\ \\ V = \pi \Big [ \dfrac{4}{3}(2)^3-\dfrac{2^3}{5} \Big ] \\ \\ V = \dfrac{64}{15}\pi \\ \\ V = (4.27 ) \pi](https://tex.z-dn.net/?f=V%20%3D%20%5Cint%5E2_0%20A%28y%29%20%5C%20dy%20%5C%5C%20%5C%5C%20%20V%20%3D%20%5Cint%5E2_0%20%5Cpi%20%284y%5E2%20-y%5E4%29%20%5C%20dy%20%20%5C%5C%20%5C%5C%20V%20%3D%20%5Cpi%20%5Cint%5E2_0%20%284y%5E2%20-y%5E4%29%20%5C%20dy%20%20%5C%5C%20%5C%5C%20V%20%3D%20%5Cpi%20%5CBig%5B%5Cdfrac%7B4%7D%7B3%7Dy%5E3%20-%20%5Cdfrac%7By%5E5%7D%7B5%7D%20%20%20%5Cbig%20%5D%20%5E2_0%20%5C%5C%20%5C%5C%20%20V%20%3D%20%5Cpi%20%5CBig%20%5B%20%5Cdfrac%7B4%7D%7B3%7D%282%29%5E3-%5Cdfrac%7B2%5E3%7D%7B5%7D%20%5CBig%20%5D%20%20%5C%5C%20%5C%5C%20%20V%20%3D%20%5Cdfrac%7B64%7D%7B15%7D%5Cpi%20%20%5C%5C%20%5C%5C%20V%20%3D%20%284.27%20%29%20%5Cpi)
Answer:
50t
Step-by-step explanation: