To calculate the velocity of the sound wave, we use this formula:
V = 331 + [0.6*T],
Where V is the velocity and T represents temperature.
When the temperature is 36 degree Celsius, we have
V = 331 + [0.6 * 36]
V = 331 + 21.6 = 352.6
Therefore, V = 352.6 m/s.
Answer:
x_{cm} = 4.644 10⁶ m
Explanation:
The center of mass is given by the equation
= 1 /
∑
Where M_{total} is the total masses of the system,
is the distance between the particles and
is the masses of each body
Let's apply this equation to our problem
M = Me + m
M = 5.98 10²⁴ + 7.36 10²²
M = 605.36 10²² kg
Let's locate a reference system located in the center of the Earth
Let's calculate
x_{cm} = 1 / 605.36 10²² [Me 0 + 7.36 10²² 3.82 10⁸]
x_{cm} = 4.644 10⁶ m
A wave will "break" because the bottom interferes with its oscillatory motion. Breaking of waves may occur anywhere that the amplitude is sufficient, including in mid-ocean. When waves enter shallow water they break because the motion of water in lower part of the wave nearest the bottom is slowed by friction so that their oscillation is faster than its supporting portion at the bottom. Thus, the wave collapses forward and breaks.
Answer: 1) a = 9.61m/s² pointing to west.
2) (a) Δv = - 37.9km/s
(b) a = - 6.10⁷km/years
Explanation: Aceleration is the change in velocity over change in time.
1) For the plane:


a = 9.61m/s²
The plane is moving east, so velocity points in that direction. However, it is stopping at the time of 13s, so acceleration's direction is in the opposite direction. Therefore, acceleration points towards west.
2) Total change of velocity:


km/s
The interval is in years, so transforming seconds in years:
v = 
km/years
Calculating acceleration:


Acceleration of an asteroid is a = -6.10⁷km/years .
Thermal energy is an example of kinetic energy , due to motion of particles .