1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IrinaK [193]
2 years ago
6

What would happen if we do not eat body building food?​

Physics
2 answers:
ValentinkaMS [17]2 years ago
7 0

Answer:

You may suffer from muscle weakness.

If you want to build muscles, protein is the way to go.

svetoff [14.1K]2 years ago
6 0

Answer:

you would die and be dead.....

Explanation:

You might be interested in
What is NOT a principle of genetics?
timurjin [86]

The recessive trait will always show up

3 0
2 years ago
Read 2 more answers
What are compounds considered to be
bija089 [108]

Answer:A compound is a substance formed when two or more elements are chemically joined.

Explation:Water, salt, and sugar are examples of compounds.

I hope this helps<3

7 0
2 years ago
Use the terms "force", "weight", "mass", and "inertia" to explain why it is easier to tackle a 220 lb football player than a 288
Tomtit [17]
<span><u>Answer </u>
The mass of 220 lb football has less than 288 lb football. So, it will be easier to move it since it will require less force. The heavy football will have a bigger momentum. Since 288 lb has more weight than 220 lb, it will have bigger inertia making it difficult for the players to stop it.
This makes it easier to tackle 220 lb football than 288 lb football. 
</span>
7 0
3 years ago
Read 2 more answers
A car is parked on a steep incline, making an angle of 37.0° below the horizontal and overlooking the ocean, when its brakes fai
patriot [66]

Answer:

a) The speed of the car when it reaches the edge of the cliff is 19.4 m/s

b) The time it takes the car to reach the edge is 4.79 s

c) The velocity of the car when it lands in the ocean is 31.0 m/s at 60.2º below the horizontal

d) The total time interval the car is in motion is 6.34 s

e) The car lands 24 m from the base of the cliff.

Explanation:

Please, see the figure for a description of the situation.

a) The equation for the position of an accelerated object moving in a straight line is as follows:

x =x0 + v0 * t + 1/2 a * t²

where:

x = position of the car at time t

x0 = initial position

v0 = initial velocity

t = time

a = acceleration

Since the car starts from rest and the origin of the reference system is located where the car starts moving, v0 and x0 = 0. Then, the position of the car will be:

x = 1/2 a * t²

With the data we have, we can calculate the time it takes the car to reach the edge and with that time we can calculate the velocity at that point.

46.5 m = 1/2 * 4.05 m/s² * t²

2* 46.5 m / 4.05 m/s² = t²

<u>t = 4.79 s </u>

The equation for velocity is as follows:

v = v0  + a* t

Where:

v = velocity

v0 =  initial velocity

a = acceleration

t = time

For the car, the velocity will be

v = a * t

at the edge, the velocity will be:

v = 4.05 m/s² * 4.79 s = <u>19.4 m/s</u>

b) The time interval was calculated above, using the equation of  the position:

x = 1/2 a * t²

46.5 m = 1/2 * 4.05 m/s² * t²

2* 46.5 m / 4.05 m/s² = t²

t = 4.79 s

c) When the car falls, the position and velocity of the car are given by the following vectors:

r = (x0 + v0x * t, y0 + v0y * t + 1/2 * g * t²)

v =(v0x, v0y + g * t)

Where:

r = position vector

x0 = initial horizontal position

v0x = initial horizontal velocity

t = time

y0 = initial vertical position

v0y = initial vertical velocity

g = acceleration due to gravity

v = velocity vector

First, let´s calculate the initial vertical and horizontal velocities (v0x and v0y). For this part of the problem let´s place the center of the reference system where the car starts falling.

Seeing the figure, notice that the vectors v0x and v0y form a right triangle with the vector v0. Then, using trigonometry, we can calculate the magnitude of each velocity:

cos -37.0º = v0x / v0

(the angle is negative because it was measured clockwise and is below the horizontal)

(Note that now v0 is the velocity the car has when it reaches the edge. it was calculated in a) and is 19,4 m/s)

v0x = v0 * cos -37.0 = 19.4 m/s * cos -37.0º = 15.5 m/s

sin 37.0º = v0y/v0

v0y = v0 * sin -37.0 = 19.4 m/s * sin -37.0 = - 11. 7 m/s

Now that we have v0y, we can calculate the time it takes the car to land in the ocean, using the y-component of the vector "r final" (see figure):

y = y0 + v0y * t + 1/2 * g * t²

Notice in the figure that the y-component of the vector "r final" is -30 m, then:

-30 m = y0 + v0y * t + 1/2 * g * t²

According to our reference system, y0 = 0:

-30 m = v0y * t + 1/2 g * t²

-30 m = -11.7 m/s * t - 1/2 * 9.8 m/s² * t²

0 = 30 m - 11.7 m/s * t - 4.9 m/s² * t²

Solving this quadratic equation:

<u>t = 1.55 s</u> ( the other value was discarded because it was negative).

Now that we have the time, we can calculate the value of the y-component of the velocity vector when the car lands:

vy = v0y + g * t

vy = - 11. 7 m/s - 9.8 m/s² * 1.55s = -26.9 m/s

The x-component of the velocity vector is constant, then, vx = v0x = 15.5 m/s (calculated above).

The velocity vector when the car lands is:

v = (15.5 m/s, -26.9 m/s)

We have to express it in magnitude and direction, so let´s find the magnitude:

|v| = \sqrt{(15.5 m/s)^{2} + (-26.9 m/s)^{2}} = 31.0m/s

To find the direction, let´s use trigonometry again:

sin α = vy / v

sin α = 26.9 m/s / 31.0 m/s

α = 60.2º

(notice that the angle is measured below the horizontal, then it has to be negative).

Then, the vector velocity expressed in terms of its magnitude and direction is:

vy = v * sin -60.2º

vx = v * cos -60.2º

v = (31.0 m/s cos -60.2º, 31.0 m/s sin -60.2º)

<u>The velocity is 31.0 m/s at 60.2º below the horizontal</u>

d) The total time the car is in motion is the sum of the falling and rolling time. This times where calculated above.

total time = falling time + rolling time

total time = 1,55 s + 4.79 s = <u>6.34 s</u>

e) Using the equation for the position vector, we have to find "r final 1" (see figure):

r = (x0 + v0x * t, y0 + v0y * t + 1/2 * g * t²)

Notice that the y-component is 0 ( figure)

we have already calculated the falling time and the v0x. The initial position x0 is 0. Then.

r final 1 = ( v0x * t, 0)

r final 1 = (15.5 m/s * 1.55 s, 0)

r final 1 = (24.0 m, 0)

<u>The car lands 24 m from the base of the cliff.</u>

PHEW!, it was a very complete problem :)

5 0
2 years ago
A rotating light is located 13 feet from a wall. The light completes one rotation every 3 seconds. Find the rate at which the li
saveliy_v [14]

Answer:

29.2 ft/s

Explanation:

The distance of the light's projection on the wall

y = 13 tan θ

where θ is the light's angle from perpendicular to the wall.

The light completes one rotation every 3 seconds, that is, 2π in 3 seconds,

Angular speed = w = (2π/3)

w = (θ/t)

θ = wt = (2πt/3)

(dθ/dt) = (2π/3)

y = 13 tan θ

(dy/dt) = 13 sec² θ (dθ/dt)

(dy/dt) = 13 sec² θ (2π/3)

(dy/dt) = (26π/3) sec² θ

when θ = 15°

(dy/dt) = (26π/3) sec² (15°)

(dy/dt) = 29.2 ft/s

5 0
3 years ago
Other questions:
  • A 10-kg dog is running with a speed of 5.0 m/s. what is the minimum work required to stop the dog in 2.40 s?
    10·1 answer
  • A leopard of mass 65kg climbs 7m up a tall tree. Calculate how much gravitational potential energy it gains. Assume g=10N/kg.
    11·1 answer
  • What are the Characteristics of theta waves
    8·1 answer
  • When you are moving up at a constant speed in an elevator, there are two forces acting on you: the floor pushing up on you (F1)
    13·1 answer
  • Help pls, answer for brainlist
    6·1 answer
  • ¿por qué los buzos, cuando emergen con urgencia, deben exhalar continuamente durante el ascenso?
    7·1 answer
  • A paintball is fired horizontally from a tower 45 m above the ground. If the paintball gun fires at 90 m/s… How long does it tak
    11·1 answer
  • There are 6 foundation of sports and which one you think is the most important?
    9·1 answer
  • There are two space ships traveling next to each other. The first one is 500
    8·2 answers
  • With a bit of algebraic reasoning find your gravitational acceleration toward any planet of mass M a distance d from its center.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!