The answer is D.) all of the above
E S *
The "E" represents Earth, "S" represent Sun, and the "*" represents the nearest star(which is Proxima Centauri).
The main thing to worry about here is units, so ill label everything out.
D'e,s'(Distance between earth and sun) = .<span>00001581 light years
D'e,*'(Distance between earth and Proxima) = </span><span>4.243 light years
Now this is where it gets fun, we need to put all the light years into centimeters.(theres alot)
In one light year, there are </span>9.461 * 10^17 centimeters.(the * in this case means multiplication) or 946,100,000,000,000,000 centimeters.
To convert we multiply the light years we found by the big number.
D'e,s'(Distance between earth and sun) = 1.496 * 10^13 centimeters<span>
D'e,*'(Distance between earth and Proxima) = </span><span>4.014 * 10^18 centimeters
</span>
Now we scale things down, we treat 1.496 * 10^13 centimeters as a SINGLE centimeter, because that's the distance between the earth and the sun. So all we have to do is divide (4.014 * 10^18 ) by (<span>1.496 * 10^13 ).
Why? because that how proportions work.
As a result, you get a mere 268335.7 centimeters.
To put that into perspective, that's only about 1.7 miles
A lot of my numbers came from google, so they are estimations and are not perfect, but its hard to be on really large scales.</span>
Answer:
a. 12.12°
b. 412.04 N
Explanation:
Along vertical axis, the equation can be written as
T_1 sin14 + T_2sinA = mg
T_2sinA = mg - T_1sin12.5 ....................... (a)
Along horizontal axis, the equation can be written as
T_2×cosA = T_1×cos12.5 ......................... (b)
(a)/(b) given us
Tan A = (mg - T_1sin12.5) / T_1 cos12.5
= (176 - 413sin12.5) / 413×cos12.5
A = 12.12 °
(b) T2 cosA = T1 cos12.5
T2 = 413cos12.5/cos12.12
= 412.04 N
Answer:
v = 1.28 m/s
Explanation:
Given that,
Maximum compression of the spring, 
Spring constant, k = 800 N/m
Mass of the block, m = 0.2 kg
To find,
The velocity of the block when it first reaches a height of 0.1 m above the ground on the ramp.
Solution,
When the block is bounced back up the ramp, the total energy of the system remains conserved. Let v is the velocity of the block such that,
Initial energy = Final energy

Substituting all the values in above equation,

v = 1.28 m/s
Therefore the velocity of block when it first reaches a height of 0.1 m above the ground on the ramp is 1.28 m/s.

if currents go in opposite directions, wires repel