Answer:
Paleontologists have argued for a long time that the demise of the dinosaurs was caused by climatic alterations associated with slow changes in the positions of continents and seas resulting from plate tectonics. Off and on throughout the Cretaceous (the last period of the Mesozoic era, during which dinosaurs flourished), large shallow seas covered extensive areas of the continents. Data from diverse sources, including geochemical evidence preserved in seafloor sediments, indicate that the Late Cretaceous climate was milder than today's. The days were not too hot, nor the nights too cold. The summers were not too warm, nor the winters too frigid. The shallow seas on the continents probably buffered the temperature of the nearby air, keeping it relatively constant.
Answer:
945 j
Explanation:
You have just given the ball kinetic energy, which is given by the following equation:
KE= 1⁄2 m v2 = 1⁄2 (2.1 kg)(30 m/s)2 = 945 Joules
(a) The work done by the force applied by the tractor is 79,968.47 J.
(b) The work done by the frictional force on the tractor is 55,977.93 J.
(c) The total work done by all the forces is 23,990.54 J.
<h3>
Work done by the applied force</h3>
The work done by the force applied by the tractor is calculated as follows;
W = Fd cosθ
W = (5000 x 20) x cos(36.9)
W = 79,968.47 J
<h3>Work done by frictional force</h3>
W = Ffd cosθ
W = (3500 x 20) x cos(36.9)
W = 55,977.93 J
<h3>Net work done by all the forces on the tractor</h3>
W(net) = work done by applied force - work done by friction force
W(net) = 79,968.47 J - 55,977.93 J
W(net) = 23,990.54 J
Learn more about work done here: brainly.com/question/25573309
#SPJ1
Answer:
t = 5.19 s
Explanation:
We have,
Height of the cliff is 132 m
It is required to find the time taken by the ball to fall to the ground. Let t is the time taken. So, using equation of kinematics as :

So, it will take 5.19 seconds to fall to the ground.
Answer:
The answer is D.
Explanation:
Average speed involve just distance and time but average velocity includes displacement and time.
(Correct me if I am wrong)