It’s half the mass of the object by its velocity ^2
<h2>
Answer:</h2>
<em>1.33 x 10⁻ ⁴ T outwards.</em>
<em></em>
<h2>
Explanation:</h2>
The equation for the magnetic force (F) on a wire whose length is L and carrying a current I in a magnetic field (B) that is uniform is given by;
F = ILB sin θ ---------------------(i)
Where;
θ = angle between the direction of the current and that of the magnetic field.
From the question,
F = 4.0 × 10⁻² N
I = 12A
L = 25m
θ = 90°
<em>Substitute these values into equation(i) and solve as follows;</em>
4.0 × 10⁻² = 12 x 25 x B x sin 90°
4.0 × 10⁻² = 300 x B x 1
4.0 × 10⁻² = 300B
0.04 = 300B
B = 
B = 0.000133
B = 1.33 x 10⁻ ⁴ T
To get the direction of the magnetic field, the right-hand rule is used.
If the right hand fingers are positioned in the correct order specified by the right hand rule, then it would be seen that the magnetic field is directed outwards.
Therefore, the magnitude and direction of the magnetic field at this location is <em>1.33 x 10⁻ ⁴ T outwards.</em>
Answer:
The base unit for time is the second (the other SI units are: metre for length, kilogram for mass, ampere for electric current, kelvin for temperature, candela for luminous intensity, and mole for the amount of substance). The second can be abbreviated as s or sec.
Explanation:
Answer:
(a) Jx = -1.14Ns, Jy = 110×3×10-³ = 0.330Ns (b) V = (0m/s)ı^−(1.79m/s)ȷ^
Explanation:
Given
W = 0.56N = mg
m = 0.56/g = 0.56/9.8 = 0.057kg
t = 3.00ms = 3.00×10-³s
Impulse is a vector quantity so we would treat it as such
We have been given the force and velocity in their component forms so to get the impulse from these quantities, we pick the respective component for the quantity we want to calculate and do the necessary calculation. The masses are scalar quantities and so do not affect the signs used in the calculations whether positive or negative. So we have that
u = (20.0m/s)ı^−(4.0m/s)ȷ^
ux = 20m/s
uy = – 4.0m/s
F = – (380N)ı^+(110N)ȷ^
Fx = –380N
Fy = 110N
J = impulse = force × time = F×t
So Jx = Fx ×t
Jy = Fy×t
Jx = –380×3×10-³ = -1.14Ns
Jy = 110×3×10-³ = 0.330Ns
Impulse also equals the change in momentum of the body. So
J = m(v–u)
J/m = v – u
V= J/m + u
Vx = Jx/m + ux
Vx = –1.14/0.057 + 20
Vx = -20 + 20 = 0m/s
Vx = 0m/s
Vy= Jy/m + uy
Vy= 0.33/0.057 + (-4.0)
Vy= 5.79 + (-4.0) = 1.79m/s
V = (0m/s)ı^−(1.79m/s)ȷ^