Answer:
Use https://www.bartleby.com/ it has helped me out a lot . Its actual tutors/teachers who answer your questions in about 30 minutes :)
Step-by-step explanation:
Answer:
V = 8.06 cubed units
Step-by-step explanation:
You have the following curves:

In order to calculate the solid of revolution bounded by the previous curves and the x axis, you use the following formula:
(1)
To determine the limits of the integral you equal both curves f=g and solve for x:

Then, the limits are a = -1 and b = 1
You replace f(x), g(x), a and b in the equation (1):
![V=\pi \int_{-1}^{1}[(\frac{13}{9}-x^2)^2-(\frac{4}{9}x^2)^2]dx\\\\V=\pi \int_{-1}^1[\frac{169}{81}-\frac{26}{9}x^2+x^4-\frac{16}{81}x^4]dx\\\\V=\pi \int_{-1}^1 [\frac{169}{81}-\frac{26}{9}x^2+\frac{65}{81}x^4]dx\\\\V=\pi [\frac{169}{81}x-\frac{26}{27}x^3+\frac{65}{405}x^5]_{-1}^1\\\\V\approx8.06\ cubed\ units](https://tex.z-dn.net/?f=V%3D%5Cpi%20%5Cint_%7B-1%7D%5E%7B1%7D%5B%28%5Cfrac%7B13%7D%7B9%7D-x%5E2%29%5E2-%28%5Cfrac%7B4%7D%7B9%7Dx%5E2%29%5E2%5Ddx%5C%5C%5C%5CV%3D%5Cpi%20%5Cint_%7B-1%7D%5E1%5B%5Cfrac%7B169%7D%7B81%7D-%5Cfrac%7B26%7D%7B9%7Dx%5E2%2Bx%5E4-%5Cfrac%7B16%7D%7B81%7Dx%5E4%5Ddx%5C%5C%5C%5CV%3D%5Cpi%20%5Cint_%7B-1%7D%5E1%20%5B%5Cfrac%7B169%7D%7B81%7D-%5Cfrac%7B26%7D%7B9%7Dx%5E2%2B%5Cfrac%7B65%7D%7B81%7Dx%5E4%5Ddx%5C%5C%5C%5CV%3D%5Cpi%20%5B%5Cfrac%7B169%7D%7B81%7Dx-%5Cfrac%7B26%7D%7B27%7Dx%5E3%2B%5Cfrac%7B65%7D%7B405%7Dx%5E5%5D_%7B-1%7D%5E1%5C%5C%5C%5CV%5Capprox8.06%5C%20cubed%5C%20units)
The volume of the solid of revolution is approximately 8.06 cubed units
The diagram of the lawn and the shed is shown below.
The area of the lawn needed to be mowed equals to the area of the yard minus the area of the shed
The area of the yard =

The area of the shed =

The area of the lawn =

The area of the lawn =

The area of the lawn =
Answer:
mark me brainliest
Step-by-step explanation:
10% increased
(a) The integral is equal to the area of the triangle; it has height 20 and base 10, so the area is 20*10/2 = 100.
(b) The integral is equal to the area of the semicircle with radius 10. It's also under the horizontal axis, so the area is negative. The semicircle has area
, so the integral is -50π.
(c) First compute

which is the area of the triangle on the right. It has height and base 5, so its area is 25/2.
Then split up the desired integral as

and plug in the integral values you know:
