1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jolli1 [7]
4 years ago
9

Find the mean of 7, 9, 6, 15, 22, 25, 31. Round to the nearest whole number.

Mathematics
1 answer:
nexus9112 [7]4 years ago
4 0
Add all the numbers and divide it by the number of numbers --> (7+9+6+15+22+25+31) = 115
115/7 = 16.4 --> conventional rounding would mean the answer would be 16
You might be interested in
Help please................
Alona [7]
Hey you're using Apex xD

Answer is D. 

Here's an example 

6= 3x2
Just divide. 6/2 = 3 <span />
8 0
4 years ago
Mr.Martinez rents a car for one day.The charge is $36 plus $0.18 per mile.Mr.Martinez has a budget $60.How many miles can he dri
kondor19780726 [428]
1... the wording is a little confusing.
Is the charge $0.18 per mile or is it actually $36.18 per mile?
8 0
4 years ago
Let z=3+i, <br>then find<br> a. Z²<br>b. |Z| <br>c.<img src="https://tex.z-dn.net/?f=%5Csqrt%7BZ%7D" id="TexFormula1" title="\sq
zysi [14]

Given <em>z</em> = 3 + <em>i</em>, right away we can find

(a) square

<em>z</em> ² = (3 + <em>i </em>)² = 3² + 6<em>i</em> + <em>i</em> ² = 9 + 6<em>i</em> - 1 = 8 + 6<em>i</em>

(b) modulus

|<em>z</em>| = √(3² + 1²) = √(9 + 1) = √10

(d) polar form

First find the argument:

arg(<em>z</em>) = arctan(1/3)

Then

<em>z</em> = |<em>z</em>| exp(<em>i</em> arg(<em>z</em>))

<em>z</em> = √10 exp(<em>i</em> arctan(1/3))

or

<em>z</em> = √10 (cos(arctan(1/3)) + <em>i</em> sin(arctan(1/3))

(c) square root

Any complex number has 2 square roots. Using the polar form from part (d), we have

√<em>z</em> = √(√10) exp(<em>i</em> arctan(1/3) / 2)

and

√<em>z</em> = √(√10) exp(<em>i</em> (arctan(1/3) + 2<em>π</em>) / 2)

Then in standard rectangular form, we have

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right)\right)

and

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right)\right)

We can simplify this further. We know that <em>z</em> lies in the first quadrant, so

0 < arg(<em>z</em>) = arctan(1/3) < <em>π</em>/2

which means

0 < 1/2 arctan(1/3) < <em>π</em>/4

Then both cos(1/2 arctan(1/3)) and sin(1/2 arctan(1/3)) are positive. Using the half-angle identity, we then have

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

and since cos(<em>x</em> + <em>π</em>) = -cos(<em>x</em>) and sin(<em>x</em> + <em>π</em>) = -sin(<em>x</em>),

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

Now, arctan(1/3) is an angle <em>y</em> such that tan(<em>y</em>) = 1/3. In a right triangle satisfying this relation, we would see that cos(<em>y</em>) = 3/√10 and sin(<em>y</em>) = 1/√10. Then

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10+3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10-3\sqrt{10}}{20}}

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

So the two square roots of <em>z</em> are

\boxed{\sqrt z = \sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

and

\boxed{\sqrt z = -\sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

3 0
3 years ago
Read 2 more answers
What is the LCM of 28,40, and 144
Simora [160]

Answer:

2 x 2 x 7 = 28 2 x 2 x 2 x 5 = 40 2 x 2 x 2 x 2 x 3 x 3 = 144 2 x 2 x 2 x 2 x 3 x 3 x 5 x 7 = 504... ... The LCM of the given two numbers using prime factorization is 36 ...

Step-by-step explanation:

8 0
4 years ago
Marianna is painting a ramp for the school play in the shape of a right triangular prism. The ramp has dimensions as shown below
garri49 [273]
32 and 44 I hope I got it right
6 0
3 years ago
Other questions:
  • Plz answer 1 and 2 for me plz plz plz
    12·1 answer
  • PLZZZ HELP I WILL GIVE BRAINLEST ON A TIMER
    15·2 answers
  • Simplify the sum. (7u^3 + 8u^2 + 7) + (8u^3 – 3u + 7)
    8·2 answers
  • What does each unit rate tell u
    11·1 answer
  • How do I answer this question
    13·1 answer
  • Complete this statement 40xa^2+24ax+32a=8a( )
    10·1 answer
  • [02.06] The label on the car's antifreeze container claims to protect the car between −30°C and 130°C. To convert Celsius temper
    13·1 answer
  • 8n - 24 = -2 (1 - 3n) + 2n
    6·2 answers
  • Which situation can be represent by the equation 1.50x + 3.00 = 9.00
    7·2 answers
  • *I’ll give brainliest* Find the area of this triangle. Round to
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!