1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mart [117]
3 years ago
12

Cuando nació don quijote

Engineering
2 answers:
yulyashka [42]3 years ago
8 0

Answer:

Originalmente publicado: 1605

ioda3 years ago
7 0
Don Quijote nació en un pequeño pueblo cerca de Madrid, Alcalá de Henares. Fue bautizado en la iglesia de Santa María el nueve de octubre 1547.
You might be interested in
The tank shown in the accompanying figure is being filled by pipes 1 and 2. If the water level is to remain constant, what is th
VMariaS [17]

Answer: 2.93 ft/sec

Explanation:  Calculate the volume/sec entering from the two inlets (Pipes 1 and 2), add them, and then calculate the flow in Pipe 3.

The table illustrates the approach.  I calculated the volume of each pipe for a 1 foot section with the indicated diameters, divided by 2 for the radius of each  using  V = πr²h.  Units of V are in^3/foot length.  Now we can multiply that volume by the flow rate, in ft/sec, to obtain the flow rate in in^3/sec.  

Add the two rates from Pipes 1 and 2 (62.14 in^3/sec) to arrive at the flow rate for Pipe 3 necessary to keep the water level constant.  Calculate the volume of 1 foot of Pipe 3 (21.21 in^3/foot) and then divide this into the inflow sum of 62.14 in^3/sec to find the flow rate of Pipe 3 (in feet/sec) necessary to keep the water level constant.

That is 2.93 ft/sec.

6 0
3 years ago
A hole of diameter D = 0.25 m is drilled through the center of a solid block of square cross section with w = 1 m on a side. The
attashe74 [19]

Answer:

q=4.013\:\:kW\\\\T_1=278.91\:\:^{\circ}C\\\\T_2=275.82\:\:^{\circ}C

Explanation:

R_{conv,1}=(h_1\pi D_1L)^{-1}=(50*0.25*2)^{-1}=0.01273\:\:K/W\\\\R_{conv,2}=(h^2*4wL)^{-1}=(4*4*1)^{-1}=0.0625\:\:K/W\\\\R_{cond(2D)}=(Sk)^{-1}=(8.59*150)^{-1}=0.00078\:\:K/W

So, heat rate can be calculated as follows:

q=\frac{T_{\infty,1}-T_{\infty,2}}{R_{conv,1}+R_{conv,2}+R_{cond(2D)}} =\frac{330-25}{0.076} =4.013\:\:kW

Surface temperatures can be calculated as follows:

T_1=T_{\infty,1}-qR_{conv,1}=330-51.09=278.91\:\:^{\circ}C\\\\T_2=T_{\infty,2}+qR_{conv,2}=25+250.82=275.82\:\:^{\circ}C

6 0
4 years ago
Explain three (3) modes of heat transfer in air conditioning system.
LenKa [72]

Answer:

1. Conduction

2. Convection

3. Radiation

Explanation:

The 3 modes of heat transfer i an air conditioning system:

1. Conduction:

The transfer of heat by conduction  takes place in solid and is when the conduction takes place as a result of direct contact in between the interacting material which transfer the heat energy from particle to particle thus conducting the heat through out the system.

2. Convection:

The other mode for the transfer of heat which takes place especially in fluids - gases and liquids is through the technique of convection in which the transfer of heat takes place by the circular motion of the atoms and molecules of the fluid which carries the heat energy and results in the distribution of the heated fluid in the entire system thus transferring all the heat energy in the entire system.

3. Radiation:

The third mode of heat transfer in the air conditioning system is through radiation. This method transfers the heat by making use of the electro-magnetic radiation in the infra red spectrum where the waves of the spectrum transfers the heat energy with the help of a medium or without any medium at all.

Thus making the radiation method of heat transfer as the only method out of the three methods which does not require the material medium for the transfer of heat energy.

4 0
3 years ago
Steam enters a turbine at 8000 kPa, 440oC. At the exit, the pressure and quality are 150 kPa and 0.19, respectively.
levacccp [35]

Answer:

\dot W_{out} = 3863.98\,kW

Explanation:

The turbine at steady-state is modelled after the First Law of Thermodynamics:

-\dot Q_{out} -\dot W_{out} + \dot m \cdot (h_{in}-h_{out}) = 0

The specific enthalpies at inlet and outlet are, respectively:

Inlet (Superheated Steam)

h_{in} = 3353.1\,\frac{kJ}{kg}

Outlet (Liquid-Vapor Mixture)

h_{out} = 890.1\,\frac{kJ}{kg}

The power produced by the turbine is:

\dot W_{out}=-\dot Q_{out} + \dot m \cdot (h_{in}-h_{out})

\dot W_{out} = -2.93\,kW + (1.57\,\frac{kg}{s} )\cdot (3353.1\,\frac{kJ}{kg} - 890.1\,\frac{kJ}{kg} )

\dot W_{out} = 3863.98\,kW

8 0
3 years ago
A solid shaft and a hollow shaft of the same material have same length and outer radius R. The inner radius of the hollow shaft
alexandr402 [8]

Answer with Explanation:

By the equation or Torque we have

\frac{T}{I_{p}}=\frac{\tau }{r}=\frac{G\theta }{L}

where

T is the torque applied on the shaft

I_{p} is the polar moment of inertia of the shaft

\tau is the shear stress developed at a distance 'r' from the center of the shaft

\theta is the angle of twist of the shaft

'G' is the modulus of rigidity of the shaft

We know that for solid shaft I_{p}=\frac{\pi R^4}{2}

For a hollow shaft I_{p}=\frac{\pi (R_o^4-R_i^4)}{2}

Since the two shafts are subjected to same torque from the relation of Torque we have

1) For solid shaft

\frac{2T}{\pi R^4}\times r=\tau _{solid}

2) For hollow shaft we have

\tau _{hollow}=\frac{2T}{\pi (R^4-0.7R^4)}\times r=\frac{2T}{\pi 0.76R^4}

Comparing the above 2 relations we see

\frac{\tau _{solid}}{\tau _{hollow}}=0.76

Similarly for angle of twist we can see

\frac{\theta _{solid}}{\theta _{hollow}}=\frac{\frac{LT}{I_{solid}}}{\frac{LT}{I_{hollow}}}=\frac{I_{hollow}}{I_{solid}}=1.316

Part b)

Strength of solid shaft = \tau _{max}=\frac{T\times R}{I_{solid}}

Weight of solid shaft =\rho \times \pi R^2\times L

Strength per unit weight of solid shaft = \frac{\tau _{max}}{W}=\frac{T\times R}{I_{solid}}\times \frac{1}{\rho \times \pi R^2\times L}=\frac{2T}{\rho \pi ^2R^5L}

Strength of hollow shaft = \tau '_{max}=\frac{T\times R}{I_{hollow}}

Weight of hollow shaft =\rho \times \pi (R^2-0.7R^2)\times L

Strength per unit weight of hollow shaft = \frac{\tau _{max}}{W}=\frac{T\times R}{I_{hollow}}\times \frac{1}{\rho \times \pi (R^2-0.7^2)\times L}=\frac{5.16T}{\rho \pi ^2R^5L}

Thus \frac{Strength/Weight _{hollow}}{Strength/Weight _{Solid}}=5.16

3 0
4 years ago
Other questions:
  • What is the effect of the workpiece specific cutting energy on the cutting forces, and why?
    5·1 answer
  • Two technicians are discussing a vehicle that will not start. Tech A states that a problem with the immobilizer system may be th
    9·1 answer
  • Two rods, with masses MA and MB having a coefficient of restitution, e, move along a common line on a surface, figure 2. a) Find
    8·1 answer
  • A seasonal color change helps animals in the Taiga to
    11·1 answer
  • A water contains 50.40 mg/L as CaCO3 of carbon dioxide, 190.00 mg/L as CaCO3 of Ca2 and 55.00 mg/L as CaCO3 of Mg2 . All of the
    5·2 answers
  • Question 10: What is a K-turn?
    5·1 answer
  • How to solve circuit theory using mesh analysis<br>​
    11·1 answer
  • A 1/4 inch 16 UNC bolt is tumed by a 8-inch wrench a robotic arm.
    9·1 answer
  • How do guest room hotel smoke alarms work and differ then regular home versions?
    10·2 answers
  • It is desired to produce and aligned carbon fiber-epoxy matrix composite having a longitudinal tensile strength of 630 MPa. Calc
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!