The answer is the mean, mode, and median increases by 4, the range of times is the same.
Week 1: Week 2:
Student - Hours Student - Hours<span>
Bob 19 </span>Bob 23<span>
James 10 </span>James 14<span>
Karen 15 </span>Karen 19<span>
Rosario 17 </span>Rosario 21<span>
Antoine 10 </span>Antoine 14<span>
Julio 16 </span>Julio 20<span>
Maria 13 </span>Maria 17<span>
The mean is the sum of all values divided by the number of values:
Week 1: (19 + 10 + 15 + 17 + 10 + 16 + 13)/7 = 100/7 = 14.28
Week 2: (23 + 14 + 19 + 21 + 14 + 20 + 17)/7 = 128/7 = 18.28
The difference in means between Week 2 and Week 1 is 4 (18.28 - 14.28 = 4)
The median is the middle value. To calculate, first rearrange values from the lowest to the highest and then find the middle value:
Week 1: 10, 10, 13, 15, 16, 17, 19 - The median is 15.
Week 2: 14, 14, 17, 19, 20, 21, 23 - The median is 19.
The difference in medians between Week 2 and Week 1 is 4 (19 - 15 = 4)
The mode is the value that occurs most frequently.
</span>Week 1: 10, 10, 13, 15, 16, 17, 19 - The mode is 10.
Week 2: 14, 14, 17, 19, 20, 21, 23 - The mode is 14.
The difference in modes between Week 2 and Week 1 is 4 (14 - 10 = 4)
The range of times is the difference between the highest and the lowest value.
Week 1: 10, 10, 13, 15, 16, 17, 19 - The range of times is 9 (19 - 10 = 9).
Week 2: 14, 14, 17, 19, 20, 21, 23 - The median is 9 (23 - 14 = 9).
The difference in the ranges of times between Week 2 and Week 1 is 0 (9 - 9 = 0)
You see how many times 20 goes into 3
Answer: x=1.6
y=4.2
Step-by-step explanation:
5.2x - y = 4.1
1.5x + y = 6.7
we will add both equations and you see that the y is getting cancelled
6.7x=10.8
x=10.8/6.7= 1.6
now in any equation we will replace x with 1.6
5.2(1.6)-y=4.1
8.3-y=4.1
-y= 4.1-8.3
-y=-4.2 multiply by -1
y=4.2

Note that both the numerator and denominator approach 0 as

, so we can try using L'Hopital's rule.

The denominator is nonzero at

, so the limit is equivalent to