Given a complex number in the form:
![z= \rho [\cos \theta + i \sin \theta]](https://tex.z-dn.net/?f=z%3D%20%5Crho%20%5B%5Ccos%20%5Ctheta%20%2B%20i%20%5Csin%20%5Ctheta%5D)
The nth-power of this number,

, can be calculated as follows:
- the modulus of

is equal to the nth-power of the modulus of z, while the angle of

is equal to n multiplied the angle of z, so:
![z^n = \rho^n [\cos n\theta + i \sin n\theta ]](https://tex.z-dn.net/?f=z%5En%20%3D%20%5Crho%5En%20%5B%5Ccos%20n%5Ctheta%20%2B%20i%20%5Csin%20n%5Ctheta%20%5D)
In our case, n=3, so

is equal to
![z^3 = \rho^3 [\cos 3 \theta + i \sin 3 \theta ] = (5^3) [\cos (3 \cdot 330^{\circ}) + i \sin (3 \cdot 330^{\circ}) ]](https://tex.z-dn.net/?f=z%5E3%20%3D%20%5Crho%5E3%20%5B%5Ccos%203%20%5Ctheta%20%2B%20i%20%5Csin%203%20%5Ctheta%20%5D%20%3D%20%285%5E3%29%20%5B%5Ccos%20%283%20%5Ccdot%20330%5E%7B%5Ccirc%7D%29%20%2B%20i%20%5Csin%20%283%20%5Ccdot%20330%5E%7B%5Ccirc%7D%29%20%5D)
(1)
And since

and both sine and cosine are periodic in

, (1) becomes
Answer:
0.25
Step-by-step explanation:
As a decimal, 0.25
As a fraction, 1/4
As a percentage, 25%
Answer:
g=1.5
Step-by-step explanation:
you want to eliminates the 2/5 so you do that by dividing it by itself (since you do the opposite equation) you do this on both side (so do 2/5 divided by itself, and 3/5 divided by 2/5) getting you 1.5 therefore all you have on the left side if this equation is g so g=1.5
<span>x^2+5x+6=0
(x+3)(x+2) = 0
x+3 = 0
x = -3
</span>x+2 = 0
x = -2
<span>
Solutions: x = -3 and x = -2
</span>
Answer:


Step-by-step explanation:
<u>Sample Space</u>
The sample space of a random experience is a set of all the possible outcomes of that experience. It's usually denoted by the letter
.
We have a number cube with all faces labeled from 1 to 6. That cube is to be rolled once. The visible number shown in the cube is recorded as the outcome. The possible outcomes are listed as the sample space below:

Now we are required to give the outcomes for the event of rolling a number less than 5. Let's call A to such event. The set of possible outcomes for A has all the numbers from 1 to 4 as follows
