Answer:
15.87% probability that a randomly selected individual will be between 185 and 190 pounds
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:
![Z = \frac{X - \mu}{\sigma}](https://tex.z-dn.net/?f=Z%20%3D%20%5Cfrac%7BX%20-%20%5Cmu%7D%7B%5Csigma%7D)
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:
![\mu = 180, \sigma = 8](https://tex.z-dn.net/?f=%5Cmu%20%3D%20180%2C%20%5Csigma%20%3D%208)
What is the probability that a randomly selected individual will be between 185 and 190 pounds?
This probability is the pvalue of Z when X = 190 subtracted by the pvalue of Z when X = 185. So
X = 190
![Z = \frac{X - \mu}{\sigma}](https://tex.z-dn.net/?f=Z%20%3D%20%5Cfrac%7BX%20-%20%5Cmu%7D%7B%5Csigma%7D)
![Z = \frac{190 - 180}{8}](https://tex.z-dn.net/?f=Z%20%3D%20%5Cfrac%7B190%20-%20180%7D%7B8%7D)
![Z = 1.25](https://tex.z-dn.net/?f=Z%20%3D%201.25)
has a pvalue of 0.8944
X = 185
![Z = \frac{X - \mu}{\sigma}](https://tex.z-dn.net/?f=Z%20%3D%20%5Cfrac%7BX%20-%20%5Cmu%7D%7B%5Csigma%7D)
![Z = \frac{185 - 180}{8}](https://tex.z-dn.net/?f=Z%20%3D%20%5Cfrac%7B185%20-%20180%7D%7B8%7D)
![Z = 0.63](https://tex.z-dn.net/?f=Z%20%3D%200.63)
has a pvalue of 0.7357
0.8944 - 0.7357 = 0.1587
15.87% probability that a randomly selected individual will be between 185 and 190 pounds
Answer:
8/12 and higher. To ensure an accurate answer, are there other fractions to compare "7/12" to?
Step-by-step explanation:
18
First you want to change the 20% into a decimal which is .20
Next you want to multiply 90 by .20 because that will give you the answer for 20% of 90
90x.20=18
Hope that helps
there are many combinations for it, but we can settle for say
![\bf \begin{cases} f(x)=x+2\\[1em] g(x)=\cfrac{9}{x^2}\\[-0.5em] \hrulefill\\ (f\circ g)(x)\implies f(~~g(x)~~) \end{cases}\qquad \qquad f(~~g(x)~~)=[g(x)]+2 \\\\\\ f(~~g(x)~~)=\left[ \cfrac{9}{x^2} \right]+2\implies f(~~g(x)~~)=\cfrac{9}{x^2}+2](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Bcases%7D%20f%28x%29%3Dx%2B2%5C%5C%5B1em%5D%20g%28x%29%3D%5Ccfrac%7B9%7D%7Bx%5E2%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20%28f%5Ccirc%20g%29%28x%29%5Cimplies%20f%28~~g%28x%29~~%29%20%5Cend%7Bcases%7D%5Cqquad%20%5Cqquad%20f%28~~g%28x%29~~%29%3D%5Bg%28x%29%5D%2B2%20%5C%5C%5C%5C%5C%5C%20f%28~~g%28x%29~~%29%3D%5Cleft%5B%20%5Ccfrac%7B9%7D%7Bx%5E2%7D%20%5Cright%5D%2B2%5Cimplies%20f%28~~g%28x%29~~%29%3D%5Ccfrac%7B9%7D%7Bx%5E2%7D%2B2)
Answer:
(5*25) - (14/7)
<em>* means multiply and / means divide</em>