Answer:
(a) Magnitude: 14.4 N
(b) Away from the +6 µC charge
Explanation:
As the test charge has the same sign, the force that the other charges exert on it will be a repulsive force. The magnitude of each of the forces will be:

K is the Coulomb constant equal to 9*10^9 N*m^2/C^2, q and qtest is the charge of the particles, and r is the distance between the particles.
Let's say that a force that goes toward the +6 µC charge is positive, then:


The magnitude will be:
, away from the +6 µC charge
The O2 sensor<span> does produce its own voltage,</span>but<span> there are also two wires.</span>
A tachometer measures, for example it measures the MPH(Miles Per Hour) in a car. So like it measures your speed, so you could be going 100 MPH.
Heat cause domains of magnets atoms to lose alignment
Answer:
2.068 x 10^6 m / s
Explanation:
radius, r = 5.92 x 10^-11 m
mass of electron, m = 9.1 x 10^-31 kg
charge of electron, q = 1.6 x 10^-19 C
As the electron is revolving in a circular path, it experiences a centripetal force which is balanced by the electrostatic force between the electron and the nucleus.
centripetal force = 
Electrostatic force = 
where, k be the Coulombic constant, k = 9 x 10^9 Nm^2 / C^2
So, balancing both the forces we get



v = 2.068 x 10^6 m / s
Thus, the speed of the electron is give by 2.068 x 10^6 m / s.