The answer is A: biodegradable.
Mols CuSO4 = M x L = 1.50 x 0.150 = 0.225
<span>mols KOH = 3.00 x 0.150 = 0.450 </span>
<span>specific heat solns = specific heat H2O = 4.18 J/K*C </span>
<span>CuSO4 + 2KOH = Cu(OH)2 + 2H2O </span>
<span>q = mass solutions x specific heat solns x (Tfinal-Tinitial) + Ccal*deltat T </span>
<span>q = 300g x 4.18 x (31.3-25.2) + 24.2*(31.3-25.2) </span>
<span>dHrxn in J/mol= q/0.225 mol CuSO4 </span>
<span>Then convert to kJ/mol
</span>
Answer:
According to the law of conservation of mass, the mass of reactants will be equal to the mass of the products.
Explanation:
Answer:
c = 0.377 J/g.°C
c = 0.2350 J/g.°C
J = 27.3 J
Explanation:
We can calculate the heat (Q) absorbed or released by a substance using the following expression.
Q = c × m × ΔT
where,
c: specific heat
m: mass
ΔT: change in the temperature
<em>It takes 49.0J to raise the temperature of an 11.5g piece of unknown metal from 13.0°C to 24.3°C. What is the specific heat for the metal? Express your answer numerically, in J/g.°C</em>
Q = c × m × ΔT
49.0 J = c × 11.5 g × (24.3°C - 13.0°C)
c = 0.377 J/g.°C
<em>The molar heat capacity of silver is 25.35 J/mol.°C. How much energy would it take to raise the temperature of 11.5g of silver by 10.1°C? Express your answer numerically, in Joules. What is the specific heat of silver?</em>
<em />
The molar mass of silver is 107.87 g/mol. The specific heat of silver is:

Q = c × m × ΔT
Q = (0.2350 J/g.°C) × 11.5 g × 10.1°C = 27.3 J
Which best compares 1 mol of sodium chloride to 1 mol of aluminum chloride?
A. Both have the same molar mass.
B. Both have the same number of ions.
C. Both are made up of 6.02 mc014-1 1023 molecules.
D. Both are made up of 6.02 mc014-2 1023 formula units.
The correct answer on E.D.G is ---Both are made up of 6.02 mc014-2 1023 formula units. D