Ecell = E°cell - RT/vF * lnQ
R is the gas constant: 8.3145 J/Kmol
T is the temperature in kelvin: 273.15K = 0°C, 25°C = 298.15K
v is the amount of electrons, which in your example seems to be six (I'm not totally sure)
F is the Faradays constant: 96485 J/Vmol (not sure about the mol)
Q is the concentration of products divided by the concentration of reactants, in which we ignore pure solids and liquids: [Mg2+]³ / [Fe3+]²
Standard conditions is 1 mol, at 298.15K and 1 atm
To find E°cell, you have to look up the reduction potensials of Fe3+ and Mg2+, and solve like this:
E°cell = cathode - anode
Cathode is where the reduction happens, so that would be the element that recieves electrons. Anode is where the oxidation happens, so that would be the element that donates electrons. In your example Fe3+ recieves electrons, and should be considered as cathode in the equation above.
When you have found E°cell, you can just solve with the numbers I gave you.
Answer:
Crystallography, nanotechnology, biophotonics, condensed matter theory and solar energy.
Explanation:
Some other subjects that should be studied in college are crystallography, nanotechnology, biophotonics, condensed matter theory ,and solar energy. These may help you in the studying of a physicist.
Hope it helped brainiest plz
B) The frequency of the emitted light is directly proportional to the energy given off by the electrons.
The molar mass of gas = 206.36 g/mol
<h3>Further explanation</h3>
In general, the gas equation can be written

where
P = pressure, atm
V = volume, liter
n = number of moles
R = gas constant = 0.082 l.atm / mol K
T = temperature, Kelvin
mass (m)= 2.89 g
volume(V) = 346 ml = 0.346 L
T = 28.3 C + 273 = 301.3 K
P = 760 mmHg=1 atm
The molar mass (M) :
