1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
soldi70 [24.7K]
3 years ago
15

Which is equivalent to 80^1/4 x?

Mathematics
1 answer:
Jlenok [28]3 years ago
4 0

Answer:

B) 4 square root 80^x

Step-by-step explanation:

You might be interested in
Simplify the expression -3÷(-2/5)​
Luden [163]

Answer:

7 1/2

Step-by-step explanation:

Because you have to keep, change, flip and it is positive because they both are negative

Can you mark me brainliest

7 0
3 years ago
The radius of a circular puddle is growing at a rate of 25 cm/s.
NikAS [45]

Answer:

a) 2500π cm/s

b) 300√π cm/s

Step-by-step explanation:

Given:

Rate of growth of radius, \frac{dr}{dt} = 25 cm/s

Area of circle is given as:

A = πr²

a)Rate of growth of area, \frac{dA}{dt}=\frac{d(\pi r^2)}{dt}

or

⇒ \frac{dA}{dt}=(2)\pi r\frac{dr}{dt} ............(1)

at r = 50 cm

on substituting the respective values, we get

⇒ \frac{dA}{dt}=(2)\pi r\frac{dr}{dt}

or

⇒ \frac{dA}{dt} = 2π(50)25 = 2500π cm/s

b) when area , A = 36 cm²

36 = πr²

r = \frac{6}{\sqrt{\pi}}

thus, using (1)

⇒ \frac{dA}{dt}=(2)\pi r\frac{dr}{dt}

on substituting the respective values, we get

⇒ \frac{dA}{dt}=(2)\pi (\frac{6}{\sqrt{\pi}})25

or

⇒ \frac{dA}{dt} = 300√π cm/s

6 0
3 years ago
Please help prove these identities!
lord [1]
<h3>Hi! It will be a pleasure to help you to prove these identities, so let's get started:</h3>

<h2>PART a)</h2>

We have the following expression:

tan(\theta)cot(\theta)-sin^{2}(\theta)=cos^2(\theta)

We know that:

cot(\theta)=\frac{1}{cot(\theta)}

Therefore, by substituting in the original expression:

tan(\theta)\left(\frac{1}{tan(\theta)}\right)-sin^{2}(\theta)=cos^2(\theta) \\ \\ \\ Simplifying: \\ \\ 1-sin^2(\theta)=cos^2(\theta)

We know that the basic relationship between the sine and the cosine determined by the Pythagorean identity, so:

sin^2(\theta)+cos^2(\theta)=1

By subtracting sin^2(\theta) from both sides, we get:

\boxed{cos^2(\theta)=1-sin^2(\theta)} \ Proved!

<h2>PART b)</h2>

We have the following expression:

\frac{cos(\alpha)}{cos(\alpha)-sin(\alpha)}=\frac{1}{1-tan(\alpha)}

Here, let's multiply each side by cos(\alpha)-sin(\alpha):

(cos(\alpha)-sin(\alpha))\left(\frac{cos(\alpha)}{cos(\alpha)-sin(\alpha)}\right)=(cos(\alpha)-sin(\alpha))\left(\frac{1}{1-tan(\alpha)}\right) \\ \\ Then: \\ \\ cos(\alpha)=\frac{cos(\alpha)-sin(\alpha)}{1-tan(\alpha)}

We also know that:

tan(\alpha)=\frac{sin(\alpha)}{cos(\alpha)}

Then:

cos(\alpha)=\frac{cos(\alpha)-sin(\alpha)}{1-\frac{sin(\alpha)}{cos(\alpha)}} \\ \\ \\ Simplifying: \\ \\ cos(\alpha)=\frac{cos(\alpha)-sin(\alpha)}{\frac{cos(\alpha)-sin(\alpha)}{cos(\alpha)}} \\ \\ Or: \\ \\ cos(\alpha)=\frac{\frac{cos(\alpha)-sin(\alpha)}{1}}{\frac{cos(\alpha)-sin(\alpha)}{cos(\alpha)}} \\ \\ Then: \\ \\ cos(\alpha)=cos(\alpha).\frac{cos(\alpha)-sin(\alpha)}{cos(\alpha)-sin(\alpha)} \\ \\ \boxed{cos(\alpha)=cos(\alpha)} \ Proved!

<h2>PART c)</h2>

We have the following expression:

\frac{cos(x+y)}{cosxsiny}=coty-tanx

From Angle Sum Property, we know that:

cos(x+y)=cos(x)cos(y)-sin(x)sin(y)

Substituting this in our original expression, we have:

\frac{cos(x)cos(y)-sin(x)sin(y)}{cosxsiny}=coty-tanx

But we can also write this as follows:

\\ \frac{cosxcosy}{cosxsiny}-\frac{sinxsiny}{cosxsiny}=coty-tanx \\ \\ Simplifying: \\ \\ \frac{cosy}{siny}-\frac{sinx}{cosx} =coty-tanx \\ \\ But: \\ \\ \frac{cosy}{siny}=coty \\ \\ \frac{sinx}{cosx}=tanx \\ \\ Hence: \\ \\ \boxed{coty-tanx=coty-tanx} \ Proved!

<h2>PART d)</h2>

We have the following expression:

\ln\left|1+cos \theta\right|+\ln\left|1-cos \theta\right|=2\ln\left|sin \theta\right|

By Logarithm product rule, we know:

log_{b}(x.y) = log_{b}(x) + log_{b}(y)

So:

\ln\left|1+cos \theta\right|+\ln\left|1-cos \theta\right|=\ln\left|(1+cos \theta)(1-cos \theta)\right|

The Difference of Squares states that:

a^2-b^2=(a+b)(a-b) \\ \\ So: \\ \\ (1+cos \theta)(1-cos \theta)=1-cos^2 \theta

Then:

\ln\left|(1+cos \theta)(1-cos \theta)\right|=\ln\left|1-cos^{2} \theta\right|

By the Pythagorean identity:

sin^2(\theta)+cos^2(\theta)=1 \\ \\ So: \\ \\ sin^2 \theta = 1-cos^2 \theta

Then:

\ln\left|1-cos^{2} \theta\right|=\ln\left|sin^2 \theta|

By Logarithm power rule, we know:

log_{b}(x.y) = ylog_{b}(x)

Then:

\ln\left|sin^2 \theta|=2\ln\left|sin \theta|

In conclusion:

\boxed{\ln\left|1+cos \theta\right|+\ln\left|1-cos \theta\right|=2\ln\left|sin \theta\right|} \ Proved!

4 0
3 years ago
Helppp me pleaseeee!!!!
Pie

Answer:

c,d,f,g

Step-by-step explanation:

7 0
3 years ago
Evaluate f(x – 3) for the function f(x) = x^2-x
Aneli [31]

Answer:

x^2-7x+12

Step-by-step explanation:

3 0
3 years ago
Other questions:
  • Graph the inverse circular function by hand, given f(x) = 3sin(2x) ;-pi/4 ≤ ≤pi/4
    6·1 answer
  • I have two squares, square A and square B. Square B’s side measures 3/4 of square A’s side.
    10·1 answer
  • A math club has 40 members. The number of girls is 5 less than 2 times the number of boys. How many members are boys? How many m
    5·1 answer
  • A rectangle has a length of x and a width of 6x^3 + 7 − x^2. Find the perimeter of the rectangle when the length is 5 feet.
    8·1 answer
  • If the area of a square is 36 square unit what si the length of a side of the square​
    13·2 answers
  • I don’t get it because it is hard
    10·2 answers
  • Subtract 5x−2 ​​from​ −3x+4 .
    12·2 answers
  • Solve the following quadratic equation:<br><br> y=5x2+10x<br> Solutions: x= and x=
    15·1 answer
  • Pls answer quickly, make sure to answer all parts
    6·1 answer
  • Aurora is planning to participate in an event at her school's field day that requires her to complete tasks at various stations
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!