Answer:
litre.50000665432158900643212lo
Complete Question:
Suppose a cobalt atom in the +3 oxidation state formed a complex with two bromide (Br-) anions and four ammonia (NH3) molecules. write the chemical formula of this complex.
Answer:
[Co(NH₃)₄]⁺Br₂
Explanation:
The cobalt atom with +3 oxidation is represented as Co⁺³, and if it's bonded to two bromide ions, and four ammonia molecules. The molecules that are bonded to the metal atom (Co) are called complexing agents.
In the representation, we first put the molecules that surround the metal atom, forming an anion with the oxidation of the metal:
[Co(NH₃)₄]⁺³
Then, the ions are put in the formula. Because there are two bromides ion, each one with 1 minus charge, only 2 plus charged will be neutralized, and the complex will be:
[Co(NH₃)₄]⁺Br₂
The control is what you keep the same for each one. For example if you are doing an experiment with plants say you water one with lemon juice, one with milk and one with warm water. The control would be they all have the same amount of sun light and soil. So the growing is equal to keep the experiment fair.
Answer:
b) 3.000 mol S
Explanation:
using Avogadro's constant
1 mol = 6.02 × 10^23 atoms
we need to find the number of moles for 1.806 × 10^24
x = 1.806 × 10^24
putting it together we now have:
1 mol = 6.02 × 10^23 atoms
x = 1.806 × 10^24
cross multiply
6.02 × 10^23 x = 1.806 × 10^24
divide both sides by 6.02 × 10^23
x = (1.806 × 10^24) ÷ (6.02 × 10^23) = 3 mol