For the purpose, we will use the equation for determining the dissociation constant from concentration and <span>percent of ionization:
Kd = c </span>× α²
α = √(Kd/c) × 100%
Kd = 6.0×10⁻⁷
c(HA) = 0.1M
α = √(6.0×10⁻⁷/0.1) × 100% = 0.23%
So, in the solution, the acid <span>percent of ionization will be just 0.23%.</span>
Explanation:
First, we will calculate fuel consumption is as follows.

= 4526 g/s
Now, we will calculate the power as follows.
Power = Fuel consumption rate × -enthalpy of combustion
= 
=
kW
Thus, we can conclude that maximum power (in units of kilowatts) that can be produced by this spacecraft is
kW.
Answer:
K8S4O16 or K8(SO4)4 depending on if the SO4 is supposed to represent sulfate or not
Explanation:
Find the molar mass of K2SO4 first:
2K + S + 4O ≈ 174 g/mol
Divide the goal molar mass of 696 by the molar mass of the empirical formula:
696 / 174 = 4
This means you need to multiply everything in the empirical formula by 4:
K2SO4 --> K8S4O16 or K8(SO4)4 depending on if the SO4 is for sulfate or not
Answer:
a. 1.78x10⁻³ = Ka
2.75 = pKa
b. It is irrelevant.
Explanation:
a. The neutralization of a weak acid, HA, with a base can help to find Ka of the acid.
Equilibrium is:
HA ⇄ H⁺ + A⁻
And Ka is defined as:
Ka = [H⁺] [A⁻] / [HA]
The HA reacts with the base, XOH, thus:
HA + XOH → H₂O + A⁻ + X⁺
As you require 26.0mL of the base to consume all HA, if you add 13mL, the moles of HA will be the half of the initial moles and, the other half, will be A⁻
That means:
[HA] = [A⁻]
It is possible to obtain pKa from H-H equation (Equation used to find pH of a buffer), thus:
pH = pKa + log₁₀ [A⁻] / [HA]
Replacing:
2.75 = pKa + log₁₀ [A⁻] / [HA]
As [HA] = [A⁻]
2.75 = pKa + log₁₀ 1
<h3>2.75 = pKa</h3>
Knowing pKa = -log Ka
2.75 = -log Ka
10^-2.75 = Ka
<h3>1.78x10⁻³ = Ka</h3>
b. As you can see, the initial concentration of the acid was not necessary. The only thing you must know is that in the half of the titration, [HA] = [A⁻]. Thus, the initial concentration of the acid doesn't affect the initial calculation.
Answer: I agree with the student because in the question prior to this One question stated thatExtensive properties very with the amount of matter ina sample, so yes i agree.
Explanation: