A molecular orbital that decreases the electron density between two nuclei is said to be <u>antibonding.</u>
The bonding orbital, which would be more stable and encourages the bonding of the two H atoms into
, is the orbital that is located in a less energetic state than just the electron shells of the separate atoms. The antibonding orbital, which has higher energy but is less stable, resists bonding when it is occupied.
An asterisk (sigma*) is placed next to the corresponding kind of molecular orbital to indicate an antibonding orbital. The antibonding orbital known as * would be connected to sigma orbitals, as well as antibonding pi orbitals are known as
* orbitals.
Therefore, molecular orbital that decreases the electron density between two nuclei is said to be <u>antibonding.</u>
<u></u>
Hence, the correct answer will be option (b)
<u />
To know more about molecular orbital
brainly.com/question/13265432
#SPJ4
<u />
<u />
Answer: 5.47m/s
Explanation:
Mass = 72.3kg
K.E = 1080.0J
V =?
K.E = 1 /2MV^2
V^2 = 2K.E /M = (2x1080)/72.3
V = sqrt [(2x1080)/72.3]
V = 5.47m/s
Answer: 150 kPa
Explanation:
Given that,
Original volume of gas V1 = 30L
Original pressure of gas P1 = 105 kPa
New pressure of gas P2 = ?
New volume of gas V2 = 21L
Since pressure and volume are given while temperature is constant, apply the formula for Boyle's law
P1V1 = P2V2
105 kPa x 30L = P2 x 21L
3150 kPa L = P2 x 21L
P2 = 3150 kPa L / 21 L
P2 = 150 kPa
Thus, 150 kPa of pressure is required to compress the gas