A chemical property of a substance is a certain characteristic that can only be observed by participating in a chemical reaction. Alternatively, a chemical property of a substance is something that can only be observed when the substance undergoes a chemical change.
I'm not sure what you're supposed to do with the first four boxes; all four are examples of chemical properties. Do you have to name the specific type of chemical property as given in the description? If so, the following would be my answers:
Flammability/Combustibility: The ability of a substance to burn.
The next two are quite strange; I'm not aware of a term that cleanly describes reactivity with water or acid. I suspect that, given the level of the material here, the general property of "reactivity" might be the answer for both the second and third descriptions
(Water-)reactivity: Some substances react when put in water.
(Acid-)reactivity: Some substances react when put in acid.
Light sensitivity: Light can interact with some things to form new substances.
As for the chart, I've filled it in as shown in the attached image. Please take care to double-check what I've written; in particular, when it comes to the property, I might have used a different term from what you were taught in class or provided in some other resource that I don't have access to. I've also color-coded qualitative/quantitative and physical/chemical for your convenience.
Answer:
Lower heat capacity
Explanation:
The heat or thermal capacity is a physical property defined as the amount of heat a material need in order to elevate a unit in its temperature, this means that water increases its temperature more easily than land.
I hope you find this information useful and interesting! Good luck!
Answer:
of 160° F. Scrambled eggs need to be cooked until firm throughout with no visible liquid egg remaining.
hope it's help you.
When we have this balanced equation for a reaction:
Fe(OH)2(s) ↔ Fe+2 + 2OH-
when Fe(OH)2 give 1 mole of Fe+2 & 2 mol of OH-
so we can assume [Fe+2] = X and [OH-] = 2 X
when Ksp = [Fe+2][OH-]^2
and have Ksp = 4.87x10^-17
[Fe+2]= X
[OH-] = 2X
so by substitution
4.87x10^-17 = X*(2X)^2
∴X^3 = 4.8x10^-17 / 4
∴the molar solubility X = 2.3x10^-6 M
Since Lutetium-177 is a beta and gamma emitter, the daughter nuclide produced from the decay of this radioisotope is 177Hf.
Beta emission of a radioisotope yields a daughter nuclide whose amass number is the same as that of its parent nucleus but its atomic number is greater is greater than that of the parent nucleus by 1 unit.
Also, gamma emission does not lead to any change in the mass number of atomic number of the daughter nucleus produced.
Hence, the stable daughter nuclide, 177Hf is produced.
Learn more: brainly.com/question/1770619