51 ft is the answer
Explanation
The hight of the man divided by the hight of school ( which is unknown )
Equal
The length of the shadow of the man divided by the shadow of the school
Cross multiplication and find the value of unknown x which is 51... and ya
Do you mean the value of y? there is no q in these equations.
Let
= amount of salt (in pounds) in the tank at time
(in minutes). Then
.
Salt flows in at a rate
![\left(0.6\dfrac{\rm lb}{\rm gal}\right) \left(3\dfrac{\rm gal}{\rm min}\right) = \dfrac95 \dfrac{\rm lb}{\rm min}](https://tex.z-dn.net/?f=%5Cleft%280.6%5Cdfrac%7B%5Crm%20lb%7D%7B%5Crm%20gal%7D%5Cright%29%20%5Cleft%283%5Cdfrac%7B%5Crm%20gal%7D%7B%5Crm%20min%7D%5Cright%29%20%3D%20%5Cdfrac95%20%5Cdfrac%7B%5Crm%20lb%7D%7B%5Crm%20min%7D)
and flows out at a rate
![\left(\dfrac{A(t)\,\rm lb}{75\,\rm gal + \left(3\frac{\rm gal}{\rm min} - 3.25\frac{\rm gal}{\rm min}\right)t}\right) \left(3.25\dfrac{\rm gal}{\rm min}\right) = \dfrac{13A(t)}{300-t} \dfrac{\rm lb}{\rm min}](https://tex.z-dn.net/?f=%5Cleft%28%5Cdfrac%7BA%28t%29%5C%2C%5Crm%20lb%7D%7B75%5C%2C%5Crm%20gal%20%2B%20%5Cleft%283%5Cfrac%7B%5Crm%20gal%7D%7B%5Crm%20min%7D%20-%203.25%5Cfrac%7B%5Crm%20gal%7D%7B%5Crm%20min%7D%5Cright%29t%7D%5Cright%29%20%5Cleft%283.25%5Cdfrac%7B%5Crm%20gal%7D%7B%5Crm%20min%7D%5Cright%29%20%3D%20%5Cdfrac%7B13A%28t%29%7D%7B300-t%7D%20%5Cdfrac%7B%5Crm%20lb%7D%7B%5Crm%20min%7D)
where 4 quarts = 1 gallon so 13 quarts = 3.25 gallon.
Then the net rate of salt flow is given by the differential equation
![\dfrac{dA}{dt} = \dfrac95 - \dfrac{13A}{300-t}](https://tex.z-dn.net/?f=%5Cdfrac%7BdA%7D%7Bdt%7D%20%3D%20%5Cdfrac95%20-%20%5Cdfrac%7B13A%7D%7B300-t%7D)
which I'll solve with the integrating factor method.
![\dfrac{dA}{dt} + \dfrac{13}{300-t} A = \dfrac95](https://tex.z-dn.net/?f=%5Cdfrac%7BdA%7D%7Bdt%7D%20%2B%20%5Cdfrac%7B13%7D%7B300-t%7D%20A%20%3D%20%5Cdfrac95)
![-\dfrac1{(300-t)^{13}} \dfrac{dA}{dt} - \dfrac{13}{(300-t)^{14}} A = -\dfrac9{5(300-t)^{13}}](https://tex.z-dn.net/?f=-%5Cdfrac1%7B%28300-t%29%5E%7B13%7D%7D%20%5Cdfrac%7BdA%7D%7Bdt%7D%20-%20%5Cdfrac%7B13%7D%7B%28300-t%29%5E%7B14%7D%7D%20A%20%3D%20-%5Cdfrac9%7B5%28300-t%29%5E%7B13%7D%7D)
![\dfrac d{dt} \left(-\dfrac1{(300-t)^{13}} A\right) = -\dfrac9{5(300-t)^{13}}](https://tex.z-dn.net/?f=%5Cdfrac%20d%7Bdt%7D%20%5Cleft%28-%5Cdfrac1%7B%28300-t%29%5E%7B13%7D%7D%20A%5Cright%29%20%3D%20-%5Cdfrac9%7B5%28300-t%29%5E%7B13%7D%7D)
Integrate both sides. By the fundamental theorem of calculus,
![\displaystyle -\dfrac1{(300-t)^{13}} A = -\dfrac1{(300-t)^{13}} A\bigg|_{t=0} - \frac95 \int_0^t \frac{du}{(300-u)^{13}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20-%5Cdfrac1%7B%28300-t%29%5E%7B13%7D%7D%20A%20%3D%20-%5Cdfrac1%7B%28300-t%29%5E%7B13%7D%7D%20A%5Cbigg%7C_%7Bt%3D0%7D%20-%20%5Cfrac95%20%5Cint_0%5Et%20%5Cfrac%7Bdu%7D%7B%28300-u%29%5E%7B13%7D%7D%20)
![\displaystyle -\dfrac1{(300-t)^{13}} A = -\dfrac{11}{300^{13}} - \frac95 \times \dfrac1{12} \left(\frac1{(300-t)^{12}} - \frac1{300^{12}}\right)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20-%5Cdfrac1%7B%28300-t%29%5E%7B13%7D%7D%20A%20%3D%20-%5Cdfrac%7B11%7D%7B300%5E%7B13%7D%7D%20-%20%5Cfrac95%20%5Ctimes%20%5Cdfrac1%7B12%7D%20%5Cleft%28%5Cfrac1%7B%28300-t%29%5E%7B12%7D%7D%20-%20%5Cfrac1%7B300%5E%7B12%7D%7D%5Cright%29%20)
![\displaystyle -\dfrac1{(300-t)^{13}} A = \dfrac{34}{300^{13}} - \frac3{20}\frac1{(300-t)^{12}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20-%5Cdfrac1%7B%28300-t%29%5E%7B13%7D%7D%20A%20%3D%20%5Cdfrac%7B34%7D%7B300%5E%7B13%7D%7D%20-%20%5Cfrac3%7B20%7D%5Cfrac1%7B%28300-t%29%5E%7B12%7D%7D)
![\displaystyle A = \frac3{20} (300-t) - \dfrac{34}{300^{13}}(300-t)^{13}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20A%20%3D%20%5Cfrac3%7B20%7D%20%28300-t%29%20-%20%5Cdfrac%7B34%7D%7B300%5E%7B13%7D%7D%28300-t%29%5E%7B13%7D)
![\displaystyle A = 45 \left(1 - \frac t{300}\right) - 34 \left(1 - \frac t{300}\right)^{13}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20A%20%3D%2045%20%5Cleft%281%20-%20%5Cfrac%20t%7B300%7D%5Cright%29%20-%2034%20%5Cleft%281%20-%20%5Cfrac%20t%7B300%7D%5Cright%29%5E%7B13%7D)
After 1 hour = 60 minutes, the tank will contain
![A(60) = 45 \left(1 - \dfrac {60}{300}\right) - 34 \left(1 - \dfrac {60}{300}\right)^{13} = 45\left(\dfrac45\right) - 34 \left(\dfrac45\right)^{13} \approx 34.131](https://tex.z-dn.net/?f=A%2860%29%20%3D%2045%20%5Cleft%281%20-%20%5Cdfrac%20%7B60%7D%7B300%7D%5Cright%29%20-%2034%20%5Cleft%281%20-%20%5Cdfrac%20%7B60%7D%7B300%7D%5Cright%29%5E%7B13%7D%20%3D%2045%5Cleft%28%5Cdfrac45%5Cright%29%20-%2034%20%5Cleft%28%5Cdfrac45%5Cright%29%5E%7B13%7D%20%5Capprox%2034.131)
pounds of salt.
Answer:
160 sq. uits
Step-by-step explanation:
160 sq. uits é a resposta
−2x + 3y + 5z = −21
−4z = 20
6x − 3y = 0
do -4z=20 first
divide both sides by -4 to get z by itself
-4z/-4=20/-4
z=-5
Use z=-5 into −2x + 3y + 5z = −21
-2x+3y+5(-5)=-21
-2x+3y-25=-21
move -25 to the other side
sign changes from -25 to +25
-2x+3y-25+25=-21+25
-2x+3y=4
6x-3y=0
find x by eliminating y
Add the equations together
-2x+6x+3y+(-3y)=4+0
-2x+6x+3y-3y=4
4x=4
Divide by 4 for both sides
4x/4=4/4
x=1
Use x=1 into 6x − 3y = 0
6(1)-3y=0
6-3y=0
Move 6 to the other side
6-6-3y=0-6
-3y=-6
Divide both sides by -3
-3y/-3=-6/-3
y=2
Answer:
(1, 2, -5)