Added together = 159.7 grams for one mole of Fe2O3<span>. That is moles of hematite, but the question is about iron. We can see there are </span>two<span> iron atoms for every hematite molecule. So the number (moles) of iron atoms is twice the moles of the hematite molecules.
so depending on how much you initially have will determine the answer</span>
False, because water vapor, water vapour or aqueous vapor, is the gaseous phase of water. It is one state of water within the hydrosphere. Water vapor can be produced from the evaporation or boiling of liquid water or from the sublimation of ice. Unlike other forms of water, water vapor is invisible.
When the pressure is increased, the equilibrium will shift to the left to offset the pressure increase. Equilibrium shifting to the left side is favored because the left side has fewer moles of gas than the number of moles of gas on the right-hand side and because it exerts less pressure. Therefore, the answer is there will be a shift toward the reactants.
Answer:
Average atomic mass = 63.553 amu.
Explanation:
Given data:
Abundance of Y-63 = 69.17%
Abundance of Y-65 = 100 - 69.17 = 30.83%
Atomic mass of Y-63 = 62.940 amu
Atomic mass of Y-65 = 64.928 amu
Atomic mass of Y = ?
Solution:
Average atomic mass= (abundance of 1st isotope × its atomic mass) +(abundance of 2nd isotope × its atomic mass) / 100
Average atomic mass= (62.940×69.17)+(64.928×30.83) /100
Average atomic mass = 4353.560 + 2001.730 / 100
Average atomic mass = 6355.29 / 100
Average atomic mass = 63.553 amu.
Answer :Solid in bottle a is ionic, solid in bottle b is molecular and solid in bottle c is ionic.
Explanation :
Ionic compound is formed when a metal atom donates one or more electrons to a non metal. This results in the formation of a cation ( a positive ion) and an anion ( a negative ion). These ions are bonded to each other by electrostatic attraction.
The intermolecular forces in case of a an ionic compound are very strong.
The melting point of a substance depends on how strongly the molecules are attracted to each other. Stronger the forces, higher is the melting point.
Therefore ionic compounds always have very high melting points.
On the other hand, covalent compounds have weak intermolecular forces. Therefore they have low melting points.
Based on above discussion, we can classify the given compounds as follows.
a) Solid in bottle a is Ionic as it has high melting point.
b) Solid in bottle b is molecular as it has low melting point.
c) Solid in bottle c is Ionic as it has high melting point.