Answer:
- 256 lbs
Explanation:
The internal axial load at point D can be calculated as the change in the subjected loads. if the magnitude of the horizontal direction = zero
; Then:
internal axial load at point D = Δ P
= -(P₂ - P₁)
= - ( 888 lbs - 632 lbs)
= - 256 lbs
Answer:
B. NET force: 2 resultant motion: left
ItsOniiSama avatar
C. Net force: 3 Resultant motion: Left
ItsOniiSama avatar
D. Net Force: 7 Resultant motion: right
ItsOniiSama avatar
E. Net Force:0 resultant motion: NO MOTION
ItsOniiSama avatar
F. NET Force: 3 resultant motion: Down
ItsOniiSama avatar
G. NET FORCE: 10 resultant motion: up
ItsOniiSama avatar
H. Net force: 3 Resultant motion: left
ItsOniiSama avatar
I. Net force: 50 Resultant motion: right
ItsOniiSama avatar
J. NET FORCE: 75 Resultant motion: down
ItsOniiSama avatar
K. Net force :200 Resultant motion: Right
ItsOniiSama avatar
L. Net force: 0 resultant motion:No motion
Explanation:
Answer:
1.06 secs
Explanation:
Initial speed of sled, u = 8.4 m/s
Final speed of sled, v = 5.8 m/s
Coefficient of kinetic friction, μ = 0.25
Using the impulse momentum theory, we know that the impulse applied to the sled is equal to change in momentum of the sled:
FΔt = mv - mu
where m = mass of the object
Δt = time interval
F = force applied
The force applied on the sled is the frictional force, which is given as:
F = -μmg
where g = acceleration due to gravity
Therefore:
-μmgΔt = mv - mu
-μmgΔt = m(v - u)
-μgΔt = v - u
Making Δt subject of formula:
Δt = (v - u) / -μg
Δt = (5.8 - 8.4) / (-0.25 * 9.8)
Δt = -2.6/ -2.45
Δt = 1.06 secs
It took the sled 1.06 secs to travel from A to B.
Answer:
31.32 m/s
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.81 m/s²
Let us assume the height of the Disque hall is 50 m

In order to make the jump Superman's initial velocity must be greater than or equal to 31.32 m/s