The speed of a electron that is accelerated from rest through an electric potential difference of 120 V is 
<h3>
How to calculate the speed of the electron?</h3>
We know, that the energy of the system is always conserved.
Using the Law of Conservation of energy,
U=0
Here, K is the kinetic energy and U is the potential energy.
Now, substituting the formula of U and K, we get:
=0------(1)
Here,
m is the mass of the electron
v is the speed of the electron
q is the charge on the electron
V is the potential difference
Let
and
represent the final and initial speed.
Here,
=0
Solving for
, we get:


=6.49
m/s
To learn more about the conservation of energy, refer to:
brainly.com/question/2137260
#SPJ4
Answer:
1.41 m/s^2
Explanation:
First of all, let's convert the two speeds from km/h to m/s:


Now we find the centripetal acceleration which is given by

where
v = 12.8 m/s is the speed
r = 140 m is the radius of the curve
Substituting values, we find

we also have a tangential acceleration, which is given by

where
t = 17.0 s
Substituting values,

The two components of the acceleration are perpendicular to each other, so we can find the resultant acceleration by using Pythagorean theorem:

The hotter molecules become, the faster they move around. The colder they are, the more slow and lethargic they are
It’s not in English can you change it please
Answer:

Explanation:
From the question we are told that:
Sound level intensity

Generally the equation for intensity level is mathematically given by

Where
I= Intensity measured





