Answer:
Ksp = 3.24 x 10⁻⁴
Explanation:
The dissociation equilibrium for a generic salt AB is:
AB(s) ⇄ A⁺(aq) + B⁻(aq)
s s
For instance, the expression for the Ksp constant is:
Ksp = [A⁺] [B⁻] = s x s = s²
According to the problem, 0.0180 mol of the salt is soluble in 1.00 L os water. That means that the solubility of the salt (s) is equal to 0.0180 mol per liter.
s = moles of solute/L of solution = 0.0180 mol/L
Thus, we calculate Ksp from the s value as follows:
Ksp = s² = (0.0180)² = 3.24 x 10⁻⁴
Talking about ions, a cation has a positive charge. That means a positive charge is gained by an atom that gives out electrons.
So first find the moles of the H₂SO₄: Mass = Moles x RFM
so mass = 5.25 x 98 = 514.5g of <span>H₂SO₄</span>
so to find how many Liters of solution use:
Volume = Density x Grams of solute (per kg +1000)
density = 1.266 x 514.5 +1000 = 1917.357kg/l
now use equation: Conc. = Moles / Volume of solution to find the conc.
Conc. = 5.25 x 1917.357 = 4.39Mol⁻¹
Hope that helps
Answer: Magnesium Mg
Explanation:
Oxidization is the process by which a substance either gains oxygen or losses electrons.
The chemical reaction of the above is denoted by,
Mg(s) + 2HCl(aq) -----> MgCl2(aq) + H2(g)
Mg went from a 0 to a +2 state which would mean that it lost electrons.
It was therefore oxidized.
Please do react or comment if you need clarification or if the answer helped you. This can help other users as well. Thank you.
Explanation:
number b is the answer for the question