Take the logarithm of both sides. The base of the logarithm doesn't matter.


Drop the exponents:

Expand the right side:

Move the terms containing <em>x</em> to the left side and factor out <em>x</em> :


Solve for <em>x</em> by dividing boths ides by 5 log(4) - log(3) :

You can stop there, or continue simplifying the solution by using properties of logarithms:



You can condense the solution further using the change-of-base identity,

1: 8 faces and 9 with the base 9 vertices and 16 edges
2: 3 faces and 5 with the bases 6 vertices and 9 edges
3: 3 faces and 4 with the base 4 vertices and 6 edges
Hope this can help you.
I can't edit pictures for you so as a result I can't answer it. But label those numbers on the x line and that will be your answer. And OMG your laptop is torn up I tell you TORN.
Answer:
m<N = 76°
Step-by-step explanation:
Given:
∆JKL and ∆MNL are isosceles ∆ (isosceles ∆ has 2 equal sides).
m<J = 64° (given)
Required:
m<N
SOLUTION:
m<K = m<J (base angles of an isosceles ∆ are equal)
m<K = 64° (Substitution)
m<K + m<J + m<JLK = 180° (sum of ∆)
64° + 64° + m<JLK = 180° (substitution)
128° + m<JLK = 180°
subtract 128 from each side
m<JLK = 180° - 128°
m<JLK = 52°
In isosceles ∆MNL, m<MLN and <M are base angles of the ∆. Therefore, they are of equal measure.
Thus:
m<MLN = m<JKL (vertical angles are congruent)
m<MLN = 52°
m<M = m<MLN (base angles of isosceles ∆MNL)
m<M = 52° (substitution)
m<N + m<M° + m<MLN = 180° (Sum of ∆)
m<N + 52° + 52° = 180° (Substitution)
m<N + 104° = 180°
subtract 104 from each side
m<N = 180° - 104°
m<N = 76°