Answer:
(-138) is the answer.
Step-by-step explanation:
Perfect square numbers between 15 and 25 inclusive are 16 and 25.
Sum of perfect square numbers 16 and 25 = 16 + 25 = 41
Sum of the remaining numbers between 15 and 25 inclusive means sum of the numbers from 17 to 24 plus 15.
Since sum of an arithmetic progression is defined by the expression
![S_{n}=\frac{n}{2}[2a+(n-1)d]](https://tex.z-dn.net/?f=S_%7Bn%7D%3D%5Cfrac%7Bn%7D%7B2%7D%5B2a%2B%28n-1%29d%5D)
Where n = number of terms
a = first term of the sequence
d = common difference
![S_{8}=\frac{8}{2} [2\times 17+(8-1)\times 1]](https://tex.z-dn.net/?f=S_%7B8%7D%3D%5Cfrac%7B8%7D%7B2%7D%20%5B2%5Ctimes%2017%2B%288-1%29%5Ctimes%201%5D)
= 4(34 + 7)
= 164
Sum of 15 +
= 15 + 164 = 179
Now the difference between 41 and sum of perfect squares between 15 and 25 inclusive = 
= -138
Therefore, answer is (-138).
The average has to be at least 120 and at most 130
To calculate the average we need the sum of all values divided by the number of values, in this case, three (135, 145 and the third result).
120 ≤ (135 + 145 + n)/3 ≤ 130
In inequalities like this, what we change in one side, must be changed in the othe rside as well.
360 ≤ 280 + n ≤ 390
80 ≤ n ≤ 110
2f +4f +2 -3
combine the like terms to get 6f-1
so yes they are equivalent
2f+4f+2-3 at f=3 would also be 17
Answer:
Step-by-step explanation: