If theres 50 cartons in total and 30 have been loaded then 20 have not.
20 x 75 = 1,500
So the answer is 1,500 candles.
By applying Pythagorean's theorem, the missing side of this right-angled triangle is: A. 7√3 inches.
<h3>How to find the missing side?</h3>
By critically observing the triangle shown in the image attached below, we can logically deduce that it is a right-angled triangle. Thus, we would find the missing side by applying Pythagorean's theorem:
z² = x² + y²
Also, the sides of this right-angled triangle are:
- Opposite side = x inches.
- Adjacent side = 7 inches.
Substituting the given parameters into the formula, we have;
14² = x² + 7²
196 = x² + 49
x² = 196 - 49
x² = 147
x = √147
x = √49 × √3
x = 7√3 inches.
Read more on Pythagorean theorem here: brainly.com/question/23200848
#SPJ1
Answer:
It is not a function.
Step-by-step explanation:
{(3,5),(-2,1),(<u>4</u>,3),(-1,<u>4</u>)}
A function is a special type of relation. In a function, no two ordered pairs have the same first component.
This relation has two 4s.
Out of your $67 for the day, $40 of it goes to the rental before you even drive it out of the lot. That leaves you $27 a day for mileage.
$27 / $0.18 per mile = <u>150 miles</u> per day, tops.
Answer:
Subtracting 7
Step-by-step explanation:
<u><em>Given:</em></u>
<em>Clara is stacking cups; she put 45 plastic cups in the first stack, 38 plastic cups in the second stack, 31 plastic cups in the third stack, and 24 plastic cups in the fourth stack. </em>
<u><em>To Find:</em></u>
<em>What kind of sequence is this?</em>
<u><em>Solve:</em></u>
<em>Let's make a table:</em>
<em />
<em>[1 stack] 45 </em>
<em>[2 stack] 38</em>
<em>[3 stack] 31</em>
<em>[4 stack] 24</em>
<em />
<em>Now all we have to do is subtract to see what each is:</em>
<em>45 - 38 = 7</em>
<em>38 - 31 = 7</em>
<em>31 - 24 = 7</em>
<em>Thus,</em>
<em>[1 stack] 45 ⇒ 7</em>
<em>[2 stack] 38 ⇒ 7 </em>
<em>[3 stack] 31 ⇒ 7 </em>
<em>[4 stack] 24 ⇒ 7 </em>
<em>Hence, each stack is going down by 7.</em>
<em />
<u><em>Kavinsky</em></u>
<em />